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Neural inspiration in 
autonomous driving/robotics

has returned center stage largely through 
Deep Learning, primarily in vision

past discomfort about lack of theoretical 
penetration/proof of competence has faded 
as performance has become better

rely on benchmarks with an eye for super-
human performance 



Neural inspiration

acceptance is helped by fact that NN are 
used in a narrow way… 

essentially as intelligent filters that extract 
information for neural representations… on 
which action/decisions are based 

decision making, planning, coordination, and 
control remain to a large extent outside the 
neural metaphor 



Neural inspiration

this helps circumscribing the problem on 
limited verifiability 

but is also a limitation in itself… => 
underusing a potential revolution… 

=> embodied cognition in closed loop 
rather than static representations and plans



Cognition in the wild…

attention/gaze

active perception/working 
memory

action plans/decisions/ 
sequences

goal orientation

motor control 

background knowledge

learning from experience



=> underlying neural processes have 
dynamic properties

graded state 

continuous time 

from which discrete events 
and categorical behavior 
emerge

continuous/intermittent 
link to the sensory and 
motor surfaces in closed 
loop

=> dynamics 

=> stability 



Two forms of dynamics

behavioral dynamics
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Embodiment hypothesis

all cognition is like soccer 
playing = has the properties 
of embodied cognition

=> embodied cognition 
reaches all forms of 
cognition, including “higher” 
symbolic reasoning



Forward neural networks form 
input-output mappings/functions
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is uniquely represented by a particular rate of neural firing. In general, however, the map is 
invertible, so that a many-to-one mapping may result. This is the case, for instance, when dif-
ferent patterns of input are mapped onto the same “response.” Still, information-theoretical 
terms are sometimes used to characterize such networks by saying that the output neurons 
“encode” particular patterns of input, perhaps with a certain degree of invariance, so that a 
set of changes in the input pattern do not affect the output. A whole field of connectionism or 
neural network theory is devoted to finding ways of how to learn these forward mappings from 
examples. An important part of that theory is the proof that certain classes of learning meth-
ods make such networks universal approximators; that is, they are capable of instantiating any 
reasonably behaved mapping from one space to another (Haykin, 2008). In this characterization 
of a feed-forward neural network, time does not matter. Any time course of the input pattern 
will be reflected in a corresponding time course in the output pattern. The output depends only 
on the current input, not on past inputs or on past levels of the output or the hidden neurons.

A recurrent network such as the one illustrated in Figure 1.3 cannot be characterized by 
such an input–output mapping. In a recurrent network, loops of connectivity can be found so 
that one particular neuron (e.g., u4 in the figure) may provide input to other neurons (e.g., u6), 
but also conversely receive input from those other neurons either directly (u6) or through some 
other intermediate steps (e.g., through u6 and u5 or through the chain from u6 to u5 to u2 to u4).  
The output cannot be computed from the input value because it depends on itself! Recurrence 
of this kind is common in the central nervous system, as shown empirically through methods 
of quantitative neuroanatomy (Braitenberg and Schüz, 1991).

To make sense of recurrent neural networks, the notion of time is needed, at least in some 
rudimentary form. For instance, neural processing in such a network may be thought of as 
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FIGURE 1.2: In this sketch of a feed-forward neural network, activation variables, u1 to u6 , are symbolized by the 
circles. Inputs from the sensory surface, s1 to s3 , are represented by arrows. Arrows also represent connections where 
the output of one activation variable is input to another. Connections are ordered such that there are no closed loops 
in the network.
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FIGURE 1.3: Same sketch as in Figure 1.2, but now with additional connections that create loops of connectivity, 
making this a recurrent neural network.
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output(t)

input(t)

output(t+1) 

·u(t) = − u(t) + h + input(t) + g(u(t))

Recurrent neural networks require 
concept of (continuous) time => 

neural dynamics

activation state, u(t)



Self-generated/self-stabilized 
activation patterns in neural dynamics

key to cognition… !

activation generated/sustained by recurrent 
connectivity (rather than by input)

who recurrently excites who? 

=> need for embedding in low-dimensional space



Dynamic neural fields

localized activation patterns 
stabilized by regular pattern of 
recurrent connectivity 

stabilized by excitatory coupling against 
decay

stabilized by inhibitory coupling against 
diffusive spread

=> attractors 
dimension, x

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes 
peaks against diffusion

input

activation field u(x)

S(u)

u



Embedding in low-dimensional space

through forward 
connectivity from 
sensory surface

e.g., feature maps…

e.g. deep networks…

activation
field

input from the
sensory surface

dimension

dimension



Embedding in low-dimensional space

through forward 
projections onto motor 
surfaces… 

=> behavioral dynamics

e.g., through peripheral 
reflex loops

motor 
dimension, r

activation
field, u(r)

motor
state, r

dr/dt



=> simulation



Dynamic Field Theory

attractor activation states

input driven solution (sub-threshold)

self-stabilized solution (peak, supra-threshold)

instabilities

detection/reverse detection => events 

selection => decision making 

memory => WM 

boost driven detection: => categories, switching 



=> Dynamic 
Field Theory

“pervasively” neural 
processing accounts of 
behavior and cognition 

dynamicfieldtheory.org

http://dynamicfieldtheory.org


Building embodied cognition

two scenarios

“table-top”: directing action or 
thought at objects in a scene 

“navigation”: generating actions 
while moving through a world 



notions in both scenarios

scene representation

generating sequences

concepts

goals, knowledge, problem solving 

Building embodied cognition



Scene representation

any action directed at an object begins with 
bringing the object into the attentional 
foreground

visual search

attentional selection in scene memory 

(selection within mental maps)



Neural dynamic architecture of 
scene memory and visual search

[Grieben et al, Attention, Perception & Psychophysics, in press]
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Fig. 5 Outline of the neural dynamic architecture for visual exploration and memory formation, cue detection, and visual

search. Boxes are neural dynamic fields or groups thereof, which are coupled as indicated by the arrows.

This architecture may look complicated, but has an inner structure that can be understood and resonates

with knowledge we have about visual cognition. In the following, we first outline the structure and function

of two sub-systems that play a role in all three tasks. Then we step through the three tasks of visual

cognition and describe the sub-networks that bring about the required neural processes.

3.1 Feed-forward feature and salience maps

Visual cognition builds on visual input from which features are extracted. This is a standard sub-task of

visual cognition, that has been modeled a number of times (e.g., Itti and Koch 2000). In our particular

instantiation of the sub-task, visual input may take the form of a video stream from live camera input or

from sequences of synthetic images (Figure 6). Three simple features are used in the model: color, orientation

and size (a combination of width and length). Color is extracted by transforming RGB values into hue-

space. Orientation is obtained from four elongate center-surround filters which are fed the saturation of

visual input which is first passed through a threshold function. Width and length are extracted using a

pyramid of center-surround filters of increasing size with a one-way inhibition along the scale dimension.

The output of the feature extraction pathway provides input into three space/feature fields, which each

combine two dimensions of visual space with one feature dimension (scene space/feature maps, B). These

sets of three-dimensional space/feature fields will play a central role throughout the architecture. They are

a mathematical formalization of Treisman’s neural feature representations.



Visual search and working memory: theory and experiment 15
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Fig. 6 The feature extraction pathway in illustrated in the blown up portion on the left and bottom. The pathway is

positioned within the complete neural dynamic architecture. See text for an explanation.

From the scene space/feature maps input is generated into a single central salience map, represented

by the scene spatial salience field. That input is obtained by integrating along each feature dimension

within each space-feature field (conspicuity) and summing across the three conspicuity representations.

3.2 Attentional selection

Visual cognition always entails attentional selection decisions. Figure 7 highlights the sub-system of the

neural dynamic architecture that generates such selection decisions.

Central is the scene spatial selection field that represents the localization of spatial attention. It re-

ceives multi-peak input from the salience field and singles out the most salient location by being in the

dynamic regime of selection, in which a single supra-threshold peak may be stable at any moment in

time. The selection decision is biased toward previously unattended positions by additional input from

the inhibition of return memory trace, which reflects the recent history of activation of the scene spatial

selection field. The self-sustained spatial working memory field reinforces that e↵ect, but its representa-

[Grieben et al, Attention, Perception & Psychophysics, in press]



boost driven 
detection 
instability

Visual Search
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[Schneegans,  Lins, Spencer, Chapter 5 of 
DFT Primer, 2016]

Attentional selection
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x

y

x

y

x
y

Search
Cue

y

size
orientation

color

x

y

scene spatial selection

Scene Guidance Memory Guidance

size
orientation

color

Camera
Image

Scene S/F
Maps

Search

Scene S/F
 Selection

Memory S/F
Maps

 Memory S/F
 Selection

Feature
Matching

scene spatial salience
x

y

dynamic
rest level

x

y

spatial working memory

Spatial
Guidance

 Spatial Guidance

S/
F 

Ov
er

la
p 

Fi
el

ds

Fig. 10 The scene and memory fields providing top-down guidance in the visual search task within the complete neural

dynamic architecture.

The resulting peaks in the scene overlap fields are projected down in the two-dimensional scene spatial

guidance field, which has a dynamic resting level that depends on the number of cued features. Thus

peaks are formed only at locations that match at least n � 1 features were n is the number of queried

features. In the case of n = 1 all objects that share this feature form peaks in the two dimensional

guidance fields. Thus scene guidance is most e↵ective in single feature search and becomes less e↵ective

in conjunctive search, if a lot of objects in the scene share all or all but one feature of the cue.

[Grieben et al, Attention, Perception & Psychophysics, in press]



Autonomous sequences of visual 
exploration and cued visual search 



Coordinate 
transformations

Multi-Directional Transformations
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[Schneegans,  Chapter 7 of 
DFT Primer, 2016]

are another 
function of 
multi-
dimensional 
activation fields



Coordinate transformations

are another 
function of 
multi-
dimensional 
activation fields

[Schneegans,  Chapter 7 of 
DFT Primer, 2016]



Sequence generation

Actions and thoughts consist of sequences 
of mental states that unfold autonomously

not necessarily “triggered” by external inputs 



Sequences in neural dynamics

intentional states 
predict/pre-activate 
their CoS=Condition 
of satisfaction

match of prediction 
activates CoS and 
inhibits the 
intentional state

intentional
noide

Condition of
 Satisfaction
(CoS)

intentional
field

CoS field
prediction

dimensions 2dimensions 1

from sensors or 
other neural 
fields/nodes

from sensors or 
other neural 
fields/nodes

[Sandamirskaya, Schöner, Neural Networks 2010]



serial order from 
demonstration

=> sequence of 
pointing 
movements 

[Tekülve et al., Frontiers 
in Neurorobotics (in press)]

Sequence 
generation 
directed at 

objects 

Jan Tekülve1,⇤ Autonomous Sequence Generation

Figure 2. Sketch of the dynamic field network with its three sub-networks.

used in two different manners, sequence learning and sequence recall, controlled by the activation of one of222

two different task nodes. These task nodes activate behaviors by boosting fields’ resting levels and enabling223

fields to generate task relevant attractor states.224

The following sections describe for each sub-network the states that drive behavior and the mechanism225

for how the system switches between those states. The last section addresses the integration of all three226

sub-networks for the two tasks Learn and Recall.227

3.1 Perception: Scene Representation228

The scene representation sub-network is based on Grieben et al. (2018) and creates three-dimensional229

(2D space and 1D color) working memory representations of objects in the visual scene captured by the230

camera. Each entry into the representation is created sequentially as the sub-network autonomously shifts231

attention across different objects in the scene.232

Frontiers 7





Concepts, relational thinking

Talking about objects 
entails bringing the 
targeted object into the 
attentional foreground

“red to the left of green”

target reference

[Lipinski, Sandamirskaya, Schöner 2009
… Richter, Lins, Schöner, Topics 2017]



into the reference and target field and enable these fields to track moving objects even if
spatial attention is currently focused elsewhere.

3.2. Attention

The core of the attentional system consists of two three-dimensional attention fields.
They are defined over the same dimensions as the two perception fields, but their activa-
tion remains below threshold unless additional input arrives from a feature attention field
or a spatial attention field.

Fig. 2. Architecture with activation snapshots while it is generating a phrase about a video. Fields are shown
as color-coded activation patterns; for three-dimensional fields, two-dimensional slices are shown. Node acti-
vation is denoted in opacity-coded circles. Spatial templates are illustrated as color-coded weight patterns
(bottom left). Excitatory synaptic connections are denoted by lines with arrowheads, inhibitory connections
by lines ending in circles. Transformations to and from polar coordinates are marked with a “T.” Steerable
neural mappings are denoted as diamonds.

40 M. Richter, J. Lins, G. Sch€oner / Topics in Cognitive Science 9 (2017)

[Richter, 
Lins, 

Schöner, 
ToPiC 
(2017)]
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left

red

“red to the left of green”



purely “mental” scene representation

from propositions

“There is a cyan object above a green object.”

“There is a red object to the left of the green object.”

“There is a blue object to the right of the red object.”

“There is an orange object to the left of the blue object.” 

inference

“Where is the blue object relative to the red object?”

[Ragni, Knauff, Psych Rev 2013]



[Kounatidou, Richter, Schöner, CogSci 2018]

Figure 1: Activation snapshot of the architecture as it forms a mental model consisting of five objects. For two-dimensional
fields, activation is shown color-coded, where blue colors denote subtreshold and yellow colors denote suprathreshold activa-
tion. For three-dimensional fields, two-dimensional slices of activation are shown. Neural nodes are denoted by circles that are
filled if the node is active and empty if inactive. Excitatory synaptic connections are shown by black lines with arrowheads,
inhibitory connections by lines ending in black circles; patterned connections are marked with a star. Steerable neural mappings
are denoted by blue diamonds. See text for details.

orange object to the left of the blue object” (shown in Fig-
ure 1) consists of three elements, all of which need to be
represented by the architecture: the object the premise is pri-
marily referring to (the target object, here orange), the spatial
relation (here, to the left of), and the object which the relation
uses as a reference position (the reference object, here blue).
The spatial transformation system represents these three ele-
ments in dedicated dynamic neural fields, the target field, the
relational field, and the reference field, respectively. The tar-
get field and reference field are defined over two-dimensional
space and receive input from the attention field. Whenever
there is a peak in the attention field, one of the fields may
be brought into the dynamic regime to form peaks. The two-
dimensional relational field represents the relative position of
a target object with respect to the reference object. The field
is defined such that the reference object would be in the cen-
ter of the field. The relational field also receives input from
the production nodes of all spatial relation concepts (e.g., TO
THE LEFT OF, see Figure 1). Coordinate transformations be-
tween the absolute spatial positions in the target field and the
relative positions in the relational field are based on steer-
able neural mappings (blue diamonds in Figure 1; Schnee-
gans & Schöner, 2012), which are approximated by convolu-

tions here. The architecture has three such coordinate trans-
forms: the first (leftmost blue diamond) enables the position
of an already existing target object to be transformed into the
relational field. This enables the architecture to make infer-
ences on an already established mental model. The second
coordinate transform (middle diamond) enables the model to
transform peaks in the relational field back into the target
field. This path accounts for the creation of new objects in the
scene: a peak is induced in the relational field from the spa-
tial template that represents one of the spatial relations. The
position in space where the peak forms determines where the
new object is going to be placed in space. The third transfor-
mation (right diamond) has a crucial impact on the position
where the peak forms in the relational field. It transforms
the output of the spatial scene representation field and feeds
inhibitorily into the relational field, introducing inhibition in
positions that are already occupied by objects in the mental
model. Due to this inhibition, peaks induced in the relational
field tend to shift further outward, avoiding changes to the al-
ready established mental model. This is consistent with the
preferred mental models that humans tend to build (Ragni &
Knauff, 2013).
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filled if the node is active and empty if inactive. Excitatory synaptic connections are shown by black lines with arrowheads,
inhibitory connections by lines ending in black circles; patterned connections are marked with a star. Steerable neural mappings
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orange object to the left of the blue object” (shown in Fig-
ure 1) consists of three elements, all of which need to be
represented by the architecture: the object the premise is pri-
marily referring to (the target object, here orange), the spatial
relation (here, to the left of), and the object which the relation
uses as a reference position (the reference object, here blue).
The spatial transformation system represents these three ele-
ments in dedicated dynamic neural fields, the target field, the
relational field, and the reference field, respectively. The tar-
get field and reference field are defined over two-dimensional
space and receive input from the attention field. Whenever
there is a peak in the attention field, one of the fields may
be brought into the dynamic regime to form peaks. The two-
dimensional relational field represents the relative position of
a target object with respect to the reference object. The field
is defined such that the reference object would be in the cen-
ter of the field. The relational field also receives input from
the production nodes of all spatial relation concepts (e.g., TO
THE LEFT OF, see Figure 1). Coordinate transformations be-
tween the absolute spatial positions in the target field and the
relative positions in the relational field are based on steer-
able neural mappings (blue diamonds in Figure 1; Schnee-
gans & Schöner, 2012), which are approximated by convolu-

tions here. The architecture has three such coordinate trans-
forms: the first (leftmost blue diamond) enables the position
of an already existing target object to be transformed into the
relational field. This enables the architecture to make infer-
ences on an already established mental model. The second
coordinate transform (middle diamond) enables the model to
transform peaks in the relational field back into the target
field. This path accounts for the creation of new objects in the
scene: a peak is induced in the relational field from the spa-
tial template that represents one of the spatial relations. The
position in space where the peak forms determines where the
new object is going to be placed in space. The third transfor-
mation (right diamond) has a crucial impact on the position
where the peak forms in the relational field. It transforms
the output of the spatial scene representation field and feeds
inhibitorily into the relational field, introducing inhibition in
positions that are already occupied by objects in the mental
model. Due to this inhibition, peaks induced in the relational
field tend to shift further outward, avoiding changes to the al-
ready established mental model. This is consistent with the
preferred mental models that humans tend to build (Ragni &
Knauff, 2013).
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Goals, knowledge, problem solving 
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Figure 4: Activation snapshots of selected fields displaying the formation of CoS peaks during a successful painting sequence.

representing the desired goal in the center of the world space,
which does not match the currently perceived position. Once
movement causes a match between desired and perceived po-
sition, a peak emerges in the CoS field causing the termina-
tion of the drive IiA (right column).

The detection instability in the drive CoS leads to an au-
tonomous transition to the visual search IiA, which is released
from inhibition through the precondition node at t4 (left col-
umn). Ridges of searched color and height are induced in the
perception fields causing the emergence of supra-threshold
peaks at overlapping positions. (right column).

A match of height and color is detected through the vi-
sual search CoS (not shown), which leads to an autonomous
transition to the reaching IiA at t5 by forming a peak at the
perceived retinal position in the two dimensional reach IiA
field (left column). The reaching IiA is destabilized after a
successful arm movement leads to detection instability in the
reach CoS-field due to an overlap between proprioception of
the eef and the reach goal position (right column).

Snapshot t6 shows the detection of a color change in the
visual scene by the transient detector after the agent success-
fully collected the color and dispensed it on the purple cube
(left column). Activation of the dispense IiA (not shown)

changes the color of the purple cube to yellow, which forms a
supra-threshold in the transient detector at the conjunction of
left and yellow. The color of the perceived change matches
with the desired color and leads to the emergence of a peak
in the desire CoS which causes a subsequent destabilizing of
the desire to paint a cube yellow (right column).

Discussion
We present a neural dynamic architecture that endows a
robotic agent with the capability to generate intentional states
of the six major psychological modes. Self-stabilized peaks
of activation within neural populations determine the content
of an intentional state while the state’s psychological mode
is determined by how the neural population is positioned
within a neural dynamic architecture. The CoS of intentional
states is modeled through the detection-instability of dynamic
neural fields with the DoF determining under which circum-
stances the instability emerges.

The architecture is demonstrated in a toy scenario, where
the agent seeks particular perceptual states (desires), and uses
beliefs about contingencies of which paint transforms which
color into which new color, to plan sequences of action (prior
intentions) based on its current scene representation (mem-
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Figure 4: Activation snapshots of selected fields displaying the formation of CoS peaks during a successful painting sequence.

representing the desired goal in the center of the world space,
which does not match the currently perceived position. Once
movement causes a match between desired and perceived po-
sition, a peak emerges in the CoS field causing the termina-
tion of the drive IiA (right column).

The detection instability in the drive CoS leads to an au-
tonomous transition to the visual search IiA, which is released
from inhibition through the precondition node at t4 (left col-
umn). Ridges of searched color and height are induced in the
perception fields causing the emergence of supra-threshold
peaks at overlapping positions. (right column).

A match of height and color is detected through the vi-
sual search CoS (not shown), which leads to an autonomous
transition to the reaching IiA at t5 by forming a peak at the
perceived retinal position in the two dimensional reach IiA
field (left column). The reaching IiA is destabilized after a
successful arm movement leads to detection instability in the
reach CoS-field due to an overlap between proprioception of
the eef and the reach goal position (right column).

Snapshot t6 shows the detection of a color change in the
visual scene by the transient detector after the agent success-
fully collected the color and dispensed it on the purple cube
(left column). Activation of the dispense IiA (not shown)

changes the color of the purple cube to yellow, which forms a
supra-threshold in the transient detector at the conjunction of
left and yellow. The color of the perceived change matches
with the desired color and leads to the emergence of a peak
in the desire CoS which causes a subsequent destabilizing of
the desire to paint a cube yellow (right column).

Discussion
We present a neural dynamic architecture that endows a
robotic agent with the capability to generate intentional states
of the six major psychological modes. Self-stabilized peaks
of activation within neural populations determine the content
of an intentional state while the state’s psychological mode
is determined by how the neural population is positioned
within a neural dynamic architecture. The CoS of intentional
states is modeled through the detection-instability of dynamic
neural fields with the DoF determining under which circum-
stances the instability emerges.

The architecture is demonstrated in a toy scenario, where
the agent seeks particular perceptual states (desires), and uses
beliefs about contingencies of which paint transforms which
color into which new color, to plan sequences of action (prior
intentions) based on its current scene representation (mem-

world
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Figure 4: Activation snapshots of selected fields displaying the formation of CoS peaks during a successful painting sequence.

representing the desired goal in the center of the world space,
which does not match the currently perceived position. Once
movement causes a match between desired and perceived po-
sition, a peak emerges in the CoS field causing the termina-
tion of the drive IiA (right column).

The detection instability in the drive CoS leads to an au-
tonomous transition to the visual search IiA, which is released
from inhibition through the precondition node at t4 (left col-
umn). Ridges of searched color and height are induced in the
perception fields causing the emergence of supra-threshold
peaks at overlapping positions. (right column).

A match of height and color is detected through the vi-
sual search CoS (not shown), which leads to an autonomous
transition to the reaching IiA at t5 by forming a peak at the
perceived retinal position in the two dimensional reach IiA
field (left column). The reaching IiA is destabilized after a
successful arm movement leads to detection instability in the
reach CoS-field due to an overlap between proprioception of
the eef and the reach goal position (right column).

Snapshot t6 shows the detection of a color change in the
visual scene by the transient detector after the agent success-
fully collected the color and dispensed it on the purple cube
(left column). Activation of the dispense IiA (not shown)

changes the color of the purple cube to yellow, which forms a
supra-threshold in the transient detector at the conjunction of
left and yellow. The color of the perceived change matches
with the desired color and leads to the emergence of a peak
in the desire CoS which causes a subsequent destabilizing of
the desire to paint a cube yellow (right column).

Discussion
We present a neural dynamic architecture that endows a
robotic agent with the capability to generate intentional states
of the six major psychological modes. Self-stabilized peaks
of activation within neural populations determine the content
of an intentional state while the state’s psychological mode
is determined by how the neural population is positioned
within a neural dynamic architecture. The CoS of intentional
states is modeled through the detection-instability of dynamic
neural fields with the DoF determining under which circum-
stances the instability emerges.

The architecture is demonstrated in a toy scenario, where
the agent seeks particular perceptual states (desires), and uses
beliefs about contingencies of which paint transforms which
color into which new color, to plan sequences of action (prior
intentions) based on its current scene representation (mem-
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Learning a new belief
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Learn a new belief
[while exploring: applying blue paint to yellow cube]



Recall a belief
[triggered by a desire and objects in scene memory]



Recall-drive-search
[based on a desire and an activated belief, 

looking for a tall pink object, which is in memory]



Summary 
low-dimensional activation fields enable the 
autonomous generation of sequences of mental 
states

events emerge from detection decisions

attentional foreground from selection decisions 

low-dimensional activation fields as substrates for scene and 
mental maps 

concepts, neural operators, and coordinate transforms enables 
generalization, inference

stability => robustness => architectures 

enables autonomous learning



Conclusions

a privileged level of description for “pervasively 
neural” process accounts for behavior and 
thinking
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What would pervasive neural 
processing “buy us” ?

embodiment for “free”: updating, control, 
coupling 

coherent architectures: understandable

learn back-ground knowledge (rather than 
program many special cases)

autonomous learning

low-energy implementations => Yulia 
Sandamirskaya 



A long way off? 

not necessarily… framework is becoming 
visible 

scaling to realistic scenarios as a challenge 

use learning (deep learning?) to extract the low-
dimensional representations within which neural 
dynamic cognition may work  

autonomous learning  within this vision… 
still a challenge 

develop the process infrastructure for that… 

but also: study implications for its use 


