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(a) Policy training architecture.
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(b) Vision training architecture.

Figure 11: The distributed ADR architecture for policy (left) and vision (right). In both cases, we use Redis for central-
ized storage of ADR parameters (�), model parameters (⇥), and training data (T ). ADR eval workers run Algorithm 1
to estimate performance using boundary sampling and report results using performance buffers ({Di}

d

i=1). The ADR
updater uses those buffers to obtain average performance and increases or decreases boundaries accordingly. Rollout
workers (for the policy) and data producers (for vision) produce data by sampling an environment as parameterized by
the current set of ADR parameters (see Algorithm 2). This data is then used by the optimizer to improve the policy and
vision model, respectively.

A few randomizations, such as observation noise, are controlled by more than one environment parameter and are
parameterized by a larger set of boundary parameters. For full details on these randomizations and their ADR
parameterization, see Appendix B.

Simulator physics. We randomize simulator physics parameters such as geometry, friction, gravity, etc. See Sec-
tion B.1 for details of their ADR parameterization.

Custom physics. We model additional physical robot effects that are not modelled by the simulator, for example,
action latency or motor backlash. See [77, Appendix C.2] for implementation details of these models. We randomize
the parameters in these models in a similar way to simulator physics randomizations.

Adversarial. We use an adversarial approach similar to [82, 83] to capture any remaining unmodeled physical effects
in the target domain. However, we use random networks instead of a trained adversary. See Section B.3 for details on
implementation and ADR parameterization.

Observation. We add Gaussian noise to policy observations to better approximate observation conditions in reality.
We apply both correlated noise, which is sampled once at the start of an episode and uncorrelated noise, which is
sampled at each time step. We randomize the parameters of the added noise. See Section B.4 for details of their ADR
parameterization.

Vision. We randomize several aspects in ORRB [16] to control the rendered scene, including lighting conditions,
camera positions and angles, materials and appearances of all the objects, the texture of the background, and the
post-processing effects on the rendered images. See Section B.5 for details.

6 Policy Training in Simulation

In this section we describe how we train control policies using Proximal Policy Optimization [98] and reinforcement
learning. Our setup is similar to [77]. However, we use ADR as described in Section 5 to train on a large distribution
over randomized environments.
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Figure 14: Vision model architecture, which is largely built upon a ResNet50 [43] backbone. Network weights are
shared across the three camera frames, as indicated by the dashed line. Our model produces the position, orientation,
and a specific representation of the six face angles of the Rubik’s cube. We specify ranges with [. . .] and dimensionality
with (. . .).

Table 2: Ablation experiments for the vision model. For each experiment, we ran training with 3 different seeds and
report the best performance here. Orientation error is computed as rotational distance over a quaternion representation.
Position error is the euclidean distance in 3D space, in millimeters. Face angle error is measured in degrees (�). "Real"
errors are computed using data collected over multiple physical trials, where the position and orientation ground truths
are from PhaseSpace (Section 3) and all face angle ground truths are from the Giiker cube. The full evaluation results,
including errors on active axis and active face angles, are reported in Appendix D Table 22.

Experiment Errors (Sim) Errors (Real)
Orientation Position Top Face Orientation Position Top face

Full Model 6.52� 2.63 mm 11.95� 7.81� 6.47 mm 15.92�

No Domain Randomization 3.95� 2.97 mm 8.56� 128.83� 69.40 mm 85.33�

No Focal Loss 15.94� 5.02 mm 10.17� 19.10� 9.416 mm 17.54�

Non-discrete Angles 9.02� 3.78 mm 42.46� 10.40� 7.97 mm 35.27�

Figure 11b gives an overview of the setup for a typical vision experiment. In the case of vision training, the “data
workers” are standalone Unity renderers, responsible for rendering simulated images using OpenAI Remote Rendering
Backend (ORRB) [16]. These images are rendered according to ADR parameters pulled from the ADR subsystem
(see Section 5). A list of randomization parameters is available in Section B.5 Table 11. Each rendering node uses 1
NVIDIA V100 GPU and 8 CPU cores, and the size of the rendering pool is tuned such that rendering is not a bottleneck
in training. The data from these rendering nodes is then propagated to a cluster of Redis nodes where it is stored in
separate queues for training and evaluation. The training data is then read by a pool of optimizer nodes, each of which
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6.1 Actions, Rewards, and Goals

Our setup for the action space and rewards is unchanged from [77] so we only briefly recap them here. We use a
discretized action space with 11 bins per actuated joint (of which there are 20). We use a multi-categorical distribution.
Actions are relative changes in generalized joint position coordinates.

There are three types of rewards we provide to our agent during training: (a) The difference between the previous and
the current distance of the system state from the goal state, (b) an additional reward of 5 whenever a goal is achieved,
(c) and a penalty of �20 whenever a cube/block is dropped.

We generate random goals during training. For the block, the target rotation is randomly sampled but constrained such
that any face points directly upwards. For the Rubik’s cube the task generation is slightly more convoluted as it depends
on the state of the cube at the time when the goal is generated. If the cube faces are not aligned, we make sure to align
them and additionally rotate the whole cube according to a sampled random orientation just like with the block (called
a flip). Alternatively, if the faces are aligned, we rotate the top cube face with 50% probability either clockwise or
counter-clockwise. Otherwise we again perform a flip. Detailed listings of the goal generation algorithms can be found
in the Section C.1.

We consider a training episode to be finished whenever one of the following conditions is satisfied: (a) the agent
achieves 50 consecutive successes (of reaching a goal within the required threshold), (b) the agent drops the cube, (c) or
the agent times out when trying to reach the next goal. Time out limits are 400 timesteps for block reorientation and
800 timesteps10 for the Rubik’s Cube.

6.2 Policy Architecture

We base our policy architecture on [77] but extend it in a few important ways. The policy is still recurrent since only a
policy with access to some form of memory can perform meta-learning. We still use a single feed-forward layer with
a ReLU activation [72] followed by a single LSTM layer [45]. However, we increase the capacity of the network by
doubling the number of units: the feed-forward layer now has 2048 units and the LSTM layer has 1024 units.

The value network is separate from the policy network (but uses the same architecture) and we project the output of
the LSTM onto a scalar value. We also add L2 regularization with a coefficient of 10�6 to avoid ever-growing weight
norms for long-running experiments.
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Figure 12: Neural network architecture for (a) value network and (b) policy network.

10We use 1600 timesteps when training from scratch.
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➡ 8 × 8 = 64 NVIDIA V100 GPUs 

 + 8 × 115 = 920 worker machines with 32 CPU

➡ training the policy continuously for several month
= 13 thousand years 

➡“This has worked surprisingly well (policy cloning)”

➡“Study whether the policy has learned to 
infer and store useful information about the 
environment in its recurrent state” 

- prediction accuracy rapidly improves to over 
80% for certain parameters….

- 13,863,132 trainable parameters per network  



What do we know about biological neuronal systems?

Massively parallel

Event-based

Massively recurrent

Plastic 
• can learn on the fly

• filtering
• stable states

• save power
• be fast

GPU, parallel computing
Recurrence is difficult: 

leads to loops; non-
Markovian; no clear input 
and output
Processing is clocked, 

asynchrony is hard to deal 
with; no gradients to learn

“Training”. Plasticity is 
difficult: Convergence? 
Testing?

➡ Turing-compliant NS, “Type A”➡ Dynamical NS, “Type B”

Can we build, control, and use neuronal systems of Type B?

Biological neural networks Artificial neural networks

- Turing Machine: the computing substrate doesn’t matter 
- Information processing

- “Computing” with the substrate 
- Control



Neuromorphic controllers

ROLLS Loihi

➡Massive concurrence 
- I/O interfaces
- “encoding”

- rate, timing, place

➡Massive recurrence 
- flexible connectivity
- attractor dynamics

➡Event-based
- spiking
- and analogue

➡Plastic
-on-chip local learning
- “memory trace”



Reactive behaviour in navigation (Braitenberg)

sensory system

motor system

nervous system
body

2 Dy na m ic  T h i n k i ng

into an activation value using a particular type of 
neural coding called “rate coding.” The idea is that 
there is a one-to-one mapping from the physical 
intensity value in the world to the activation value in 
the nervous system, that is, to the firing rate induced 
by stimulation of the sensory cell. Similarly, motor 
systems can be characterized using a rate code pic-
ture where the activation value in the nervous sys-
tem is mapped to the force generated by a motor.

Critically, Braitenberg took his metaphor one 
step farther by situating the vehicle in a structured 
environment. Figure I.2 shows one of his vehicles 
situated in an environment that has a stimulus off 
to the left such that stimulation hits the two sensors 

differentially. In particular, the left sensor receives 
a higher intensity than the right sensor. If we 
assume that this critter is wired up such that strong 
stimulus intensity leads to low activation levels, this 
situation will generate an orienting behavior, what 
biologists have called “taxis”—the critter will turn 
toward the input. Why does this happen? In this 
vehicle, the nervous system is organized ipsilater-
ally, so the right motor receives input from acti-
vation associated with the right sensor. Because 
strong stimulation leads to a lower firing rate, the 
left motor will receive less activation than the right 
motor. Consequently, the left motor will turn more 
slowly than the right motor and the vehicle will 
turn toward the source. As it approaches the source, 
the intensities get stronger and the firing rates drop 
perhaps to zero—the critter approaches the stimu-
lus and stops.

The lesson from this narrative is that mean-
ingful behavior is not generated solely from a 
feed-forward view of the nervous system; rather, 
meaningful behavior emerges when an organism 
is situated in an appropriately structured envi-
ronment. All four components of the vehicle are 
important. Indeed, we should really think of the 
structured environment as the fifth component of 
the vehicle—without it, no meaningful behavior 
will arise, as James J Gibson has forcefully argued.

When we put all five components together, 
the resultant “vehicle–environment system” forms 
something called a dynamical system. To see this, 
the graph on the top of Figure I.3 collapses the sen-
sor and motor characteristics down into one direct 
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FIGURE I.1: A  Braitenberg vehicle consists of sensory systems, motor systems, a nervous system, and a body. The 
sensory characteristic shown at the top right describes the activation output by the sensor system as a function of  
the physical intensity to which the sensor is sensitive. The motor characteristic shown at the bottom right describes the 
movement generated by the motor system as a function of the activation received as input.
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FIGURE I.2: The taxis vehicle of Braitenberg in an envi-
ronment with a single source of intensity. The sensor 
characteristic is a monotonic negative function, the motor 
characteristic a monotonic positive function. This leads 
to taxis behavior in which the vehicle turns toward the 
source (curved arrow).
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Braitenberg “de luxe” on a neuromorphic chip
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We chose however to connect the robot over a serial port to the Parallella to make connection
more robust and the small size, weight and power consumption of the Parallella allow it to be
mounted on the robot as well.

The second supported robot is the PushBot, also provided by NST. The PushBot has a similar
interface as the OmniRob and can also be easily accessed with the build-in WiFi module[8] over
a socket application programming interface (API).

Figure 13. The two robotic platforms currently supported by omnibot-lib: on the left the PushBot
and on the right the OmniBot (see also [12, 5]) for more information

2.4.1 Interface

RobotHost PC

robot control
and connectivity
robot listener

Robot.h
OmniRobot.h
PushBot.h

RobotListener.h
USBConnector.h
TCPConnector.h

Figure 14. Header files defining the interfaces to the robots and the robot listeners

The Robot was controlled by sending the necessary instructions over the serial connection from
the Parallella. The most important instructions are listed in table 1 on the following page:

Similarly to the DVS camera, di↵erent properties of the OmniBot are monitored asyn-
chronously by the RobotListener object, such as the actual servo states, if and which bumper
has been hit, making use again of the observer pattern as can be seen in figure 15 on page 15.
These states are logged as formatted text or processed immediately, such as the bumper states,
that trigger an emergency stop of the robot until the next drive command is send. At the
moment the Robot is polled in an interval of 1 s, future updates of the OmniBot firmware will
feature a broadcast function. However, logging the robot parameters is currently disabled as it
is favored to directly log the mapped keyboard inputs (see also figure 9 on page 11 for a list of
the mappings) instead of the polled robot parameters, amounting to the same result. Linux has
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Navigation with a neuromorphic device

Milde, M.; Blum, H.; Dietmüller, A; Sumislawska, D.; Conradt, J.; Indiveri, G. & Sandamirskaya, Y. Obstacle avoidance and target acquisition 
for robot navigation using a mixed signal analog/digital neuromorphic processing system Frontiers in Neurorobotics, 2017.

Avoiding obstacles Output of the sensor and the chip

Target acquisition

WTA / DNF 
(recurrence, filtering)



Reference frames
View-based target representation:

• target in view • target lost from view

Allocentric target representation:

Target Target
N✓rel

✓mem
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ROLLS device

Neural ref. frame transformation:

✓mem = ✓rel � �



Neuronal coding of 3-way relations
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Neuromorphic SLAM: 1) Heading direction / orientation

HD

SR

IHD

Kreiser, R.; Cartiglia, M. & Sandamirskaya, Y. A Neuromorphic approach to path integration: a head direction spiking neural 
network with visually-driven reset. IEEE Symposium for Circuits and Systems, ISCAS, 2018 



Moser et al. Annual Review of Neuroscience 2008 

took 60 minutes (at 50ms time step); the simulated maps’
area was 2x2m2. Qualitatively, the simulation results show a
faithful representation of the environments.

(a) Environment1 (b) Encoded map1 (c) True collision map1

(d) Environment2 (e) Encoded map2 (f) True collision map2

(g) Environment3 (h) Encoded map3 (i) True collision map3

Fig. 9: Maps learned after 60 min of simulation. The first
column shows simulation environments, the second and third
columns show the learned maps reconstructed from plastic
synaptic weights between PN and CON and the true collision
map, respectively.

To measure the quality of the learned maps quantitatively,
we assigned a score to each learned collision position of the
robot. The score was evaluated using a Gaussian blurring
filter when computing correlation between the ground-truth
and neural-based maps. If the learned position was the same
as the true collision position, the system scored 1 point, if
the learned position deviated from the true position by 1
neuron unit in any direction, the system scored 0.5 point,
etc. The score of the encoded maps was growing linearly
with simulation time, with a slope of 0.25-0.3 of the ideal
score (plots can not be shown here for space constraints),
which reflects accumulation of error at a constant rate during
simulation, due to the accumulation of discretization errors
in both heading direction and position networks.

C. Dynamic mapping
In this section, we demonstrate how depression in plastic

synapses can be used to learn a map in a changing envi-
ronment (also known as dynamic mapping, Fig. 10). The
simulation shown in Fig. 10 was run for 35 minutes. We

started with an environment shown in Fig. 10(a). After 5
minutes of simulation time (at 50ms simulation step), the
inside walls were removed while the robot continued to
navigate in the environment. The final environment is as
shown in Fig. 10(c).

Fig. 10: Demonstration of dynamic mapping. At the begin-
ning, the robot is confined with walls in a small square space
(a). The walls are replaced after 5 minutes forming a larger
square (c). The robot is able to unlearn the previous map.

The map encoded in the plastic synapses after 5 minutes
of simulation is shown in Fig. 10(b). Fig. 10(d) shows the
encoded map after the simulation ended. These results show
that the previously learned collision positions were unlearned
after the walls were removed, if the robot passed the respec-
tive position again without a collision. Our SNN SLAM is
thus not only able to learn the map of a static environment,
but also update the map in a dynamic environment, using
synaptic depression and potentiation.

D. Neuromorphic realization
Fig. 11 shows activity of spiking neurons on the neuro-

morphic device Dynap-se [32] that were wired up to form
the path-integrating architecture. The first plot in the figure
shows the arrangement of neurons on the 4 chips of the
Dynap-se device (each chip being divided into 4 cores of
256 neurons). Figs. 11(2-6) show snapshots of activity on the
chip as the robot turns left (0-9s), stops turning and continues
moving to the west (11s), and then turns to the right, moving
in East direction after 24 seconds of simulation, Fig. 11(6). In
the PN and IPN neural populations, one can observe that the
activity moves according to activity in the HD population,
which is driven by the Turn populations (TR or TL). The
activity peak in the PN population is marked with a black
circle around the purple spikes.

A spiking neural network realized with neuromorphic
hardware is thus able to represent and update the position

Kreiser, R.; Pienroj, P.; Renner, A. & Sandamirskaya, Y. Pose Estimation and Map Formation with Spiking Neural Networks: 
towards Neuromorphic SLAM. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2018 

Position Network

Plastic Synapses

Neuromorphic SLAM: 2) Position, 2D map



“Proprioception” only

Correction using vision

Neuromorphic SLAM: 3) Errors, sensor fusion
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Fig. 2: Dependence of the angular velocity, estimated based
on the bump movement in the HD population, on the firing
rate of Shift neurons. The input firing rate determines how
fast the bump in HD network moves and thus the speed of
neuronal path integration.

LEDs around the robot with different blinking frequencies to
side-step complex visual processing. The LEDs are sensed
with a dynamic vision sensor (DVS) camera and an event-
based vision routine detects different blinking frequencies
in the center of the DVS’s field of view. When an LED is
detected, one of the LED neurons is activated using “spike
generators” on the Kapoho Bay chip.

The path integration HD population is connected to LED
neurons with plastic synapses that are initialized with zero
weights. These plastic synapses are strengthened or weak-
ened according to a spike-time dependent local learning
rule, Eq. (??). After learning, the activity bump in the path
integration HD population causes a “recall” of the LED that
has been previously detected at the respective position.

To enable recall of the robot’s orientation based on the de-
tected visual cues (LEDs), we introduce another ring attractor
network – the memory HD network shown in Fig. ?? above
the LED neurons. The memory HD population receives

Fig. 3: The experimental setup: a Pushbot robot rotates on a
spot, surrounded by blinking LEDs. Positions of the LEDs
are learned in an SNN and updated, along with the path
integration speed, at loop closure events.

excitatory one-to-one input from the path integration heading
direction (HD) neurons. Plastic synapses leading from LED
neurons to memory HD form associations between visual
landmarks and the robot’s orientation when a visual cue (a
blinking LED) is detected by the robot. The plastic synapses
are initialized with zero weights and updated according to
the learning rule Eq. (??):

DwHD!LED = y0 · x1 · (y1 � c1)� x0 · (x1 + c2), (1)

DwLED!Mem = x0 · y1 · x1 � y0 · (y1 + c2), (2)

where wHD!LED and wLED!Mem are weights of the synapses
connecting path integration HD neurons to LED neurons and
LED neurons to memory HD neurons, respectively; x0 and
y0 are binary variables that turn from 0 to 1 when the pre-
or the post-synaptic neuron spikes and turn back to 0 in
the next time step; x1 and y1 are pre- and post-synaptic
traces computed as spikes convolved with an exponentially
decaying temporal kernel; c1 and c2 are constants balanc-
ing synaptic potentiation (weight increase) and depression
(weight decrease). The learning engine on Loihi is described
in [?].

During learning, the plastic synapses leading from the
path integration HD neurons to the LED neurons follow
Eq. (??). During their co-activation at a post-synaptic spike
(y0 = 1), the weight increases (the first term in the equation)
if post-synaptic activity trace is above a threshold c1. The
synaptic weight decreases when the pre-synaptic neuron (the
path integration HD neuron) is active while the postsynaptic
neuron (the LED neuron) is inactive (facilitated by the second
term).

The weights of the synapses from the LED neurons to
the memory HD increase if both the pre- and post-synaptic
neurons are active at a pre-synaptic spike (both presynaptic
trace x1 and postsynaptic trace y1 in Eq. (??) are high). If
a memory neuron (post-synaptic) is active while the LED
neuron (pre-synaptic) is silent (no LED is detected), the
weight decreases and the previously learned association is
unlearned.

Thus, the path integration HD neurons learn to ex-
pect an LED/landmark. The memory HD neurons represent
the orientation (heading direction) inferred both based on
a previously learned position of the currently perceived
LED/landmark and the path integration. The two inputs
may overlap when no error has accumulated since the last
encounter of the landmark, or not.

3) Error estimation: When an already learned LED is
detected in a loop-closure event, a mismatch (error) in
the HD populations can be detected. We distinguish two
error classes: small errors that probably arise from a path
integration offset and large errors that are probably caused
by changes in the environment. Small errors should reset the
orientation estimate to the one closer to the value, inferred
based on the learned map and update the path integration
speed depending on the sign of the error. Large errors indi-
cate a change in the environment and thus facilitate forgetting

of previously learned LED-associations and learning of the
currently observed ones.

The central part of the error-correcting circuit is the Error
Estimation network (a 2D neuronal array in Fig. ??). This
network consists of a 2D layer of neurons that receive
input from the path integration HD population and from
the memory HD neurons. These two 1D inputs enter the
2D network along different dimensions, their spikes are
integrated by the neurons in the Error Estimation network.
The neuron, for which the two 1D activity bumps overlap,
is activated.

Neurons in the Error Estimation network are connected
to an output layer that consists of two read-out populations,
representing the positive or the negative error. The position
of the activity bump (active neuron) in one of the read-
out populations corresponds to the difference between the
positions of the bumps in the path integration HD and the
memory HD populations and thus represents the magnitude
of the error.

4) Error correction: Apart from the error magnitude, the
error estimation network detects the sign of the error, which
signals if the orientation estimated through path integration
is ahead or behind the orientation that is inferred from the
detected LED and the activated memory HD neuron.

Neurons marked green and blue in Fig. ?? correspond to
a small error that triggers calibration of the path integra-
tion network. Two groups of neurons representing a small
negative error (blue) and a small positive error (green) read
out the sign and magnitude of the (small) estimated error.
To convert the determined error into firing rates of the Shift
neurons, these groups are connected to two pools of speed
correcting neurons. These neurons translate the place-code of
the error read-out neurons (the identity of the single active
neuron represents the error magnitude) to rate code, where
the firing rate of the neural population represents the encoded
value. To achieve this, each neuron in the positive or negative
error population is connected to a certain number of the
speed correcting neurons, proportional to the detected error
magnitude (Fig. ??): e.g., the error neuron that represents
the lowest error is connected to a single speed-correcting
neuron, while an error neuron that represents a high error is
connected to a dozen of speed correcting neurons.

The shift neurons (Scw and Sccw) are driven by plastic
synapses from the motor neurons (Mcw and Mccw), which
send an efference copy of the motor command to the path
integration system. The two speed correcting populations de-
crease or increase the firing rate of the shift neurons: positive
error neurons are excitatory and increase the firing rate, while
negative error neurons are inhibitory and decrease the firing
rate. This temporary correction is then made permanent by
inducing a weight change in the plastic synapses from Mcw

and Mccw to Scw and Sccw according to the following error-
modulated Hebbian learning rule:

DwM!S = (x0 · y1 + y0 · x1) · r · (wmax �wM!S)� x0 · r. (3)

Here, r denotes the reinforcement (error) trace that is set to
1 by the detected error and decays exponentially over time.

The maximal weight is limited by a value of wmax = 120.
Whenever the post-synaptic firing rate is higher than

the pre-synaptic one, the synaptic weight is more likely
to increase: the weight is increased if the pre- and post-
synaptic neurons are active at the same time and the weight
is decreased upon every pre-synaptic spike, not followed
or preceded by a post-synaptic spike. The negative weight
update brings about the property that higher pre-synaptic than
post-synaptic firing rate leads to synaptic weight depression.
Thus, the weight increase or decrease is controlled by the
firing rate of the post-synaptic (Shift) neurons during error
detection.

When the orientation estimation in the path integration
HD matches the LED-induced orientation in memory HD,
the error is zero and the learned synaptic weights determine
the firing rate of the Scw and Sccw neurons and with that the
path integration speed, i.e. the movement speed of the bump
in the path integration HD.

C. Neuromorphic robotic setup
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2nd dimension

Fig. 4: Spikes-flow in the neuromorphic architecture: Motor
signals are sent to the path integration Head Direction (HD)
network, while visual information from DVS is sent to the
LED layer, connected to the memory HD network. The mem-
ory HD also receives input from the path integration HD. The
memory HD builds the map and drives the error detection
network, which corrects the map and path integration speed.

We evaluate the system’s performance with simulated and
real robotic data in a changing environment. The robot used
in this work is a mobile platform called Pushbot, which
consists of a 10x10 cm chassis with two motors driving two
independent tracks for propulsion. It comprises an embedded
DVS – a neuromorphic event-based camera [?], [?]. Each
pixel of the DVS is sensitive to the temporal change in
luminance and sends out an event using the Address Event
Representation (AER) protocol. The differential values of
the robot’s wheel encoders are used to generate input spike
trains with frequencies proportional to the robot’s angular
velocity. The initial frequency is chosen arbitrarily and is

9 3.1. HD Network

Figure 3.2: Heading Direction Network: The HD network has 10 neurons in each
layer, which determines the resolution of 36�.

3.1 HD Network

The HD network is inspired by the head direction cells in an animal’s brain and
obtains the robot’s orientation. First it was developed by [13] and the architecture is
shown in figure 3.2. The HD network consists of 4 ring layers: the heading direction
(HD) layer, the shift clockwise (SCW) layer, the shift counterclockwise (SCW) layer
and the integrated heading direction (IHD) layer. The network also has an angular
velocity clockwise (AV CW) and an angular velocity counter clockwise (AV CCW)
neuron, which are the inputs to the network. These are generated through the wheel
encoders of the robot.
The HD layer consists of a ring of N neurons. Each neuron represents an angle,
to which the robot is heading to, with respect to a fixed external reference frame.
N defines the resolution of the network, which is 360�/N . This number is crucial
for the whole network architecture, since it defines the size of all layers of the MN,
except the LED layer, and of all layers of the ED network.
The HD layer is inhibitory connected to all neurons of both shifting layers, except
the one, which represents the same angle, which is active on the HD layer. The
AV CW and AV CCW neurons are excitatory connected to all neurons of the SCW
and SCCW layers. In this work there is only one shift layer for each orientation
implemented. Increasing and decreasing of the speed is performed with more or less
spiking activity on the AV neurons.
On the shift layer only the neuron, which is not inhibited can be active. If there
is an AV CW input, the neuron i on the SCW layer spikes, which is connected to
neuron i + 1 on the IHD layer. If there is an AV CCW input, the neuron i on the
SCCW layer spikes, which is connected to neuron i � 1 on the IHD layer. On the
IHD the active neuron is shifted by one in comparison with the HD layer. The
IHD layer is excitatory one to one connected to the HD layer and updates the new
heading direction of the robots orientation.

1Most likely the pushboot [37] will be used to generate real data and to execute the network
in a real scenario.

10 3.2. Memory Network

Further the HD and the IHD layer are connected to themselves by a winner-take-all
connection. Consequently, on each layer at most one neuron is active at the same
time step, since the size of the activity bump is defined as one, meaning that each
neuron inhibits all other neurons of the same layer.

3.2 Memory Network

The place cells of an animal’s brain inspire the Memory Network (MN). In particu-
lar, the neurons that capture and process the DVS input should be seen in analogy
to the place cells. Because if the robot detects an LED, it should infer, that it is at
the specific place, where the LED is located. On these grounds LED neurons are
created, which spike, if a specific LED is detected and these LED neurons are then
connected to a layer that should tell the robot, where it is.
The MN is responsible for storing the objects, in this case LEDs. The LEDs are
stored in the synaptic weights. If the weight is high, a LED is at a certain position
and if the weight is zero, there is no LED. For this task two information have to be
known: which LED and where the LED is located. Therefore the MN receives two
information: the current heading direction from the HD network and the sensory
input from an eDVS camera, if and which LED is detected. Figure 3.3 shows a
graphic representation of the architecture.

Figure 3.3: Memory Network: The MemHD and the Mem layer have the same
number of neurons as the layers in the HD network. The LED layer has three
neurons, meaning that the network is able to detect three di↵erent LEDs.

The MN consists of three layers: the Memory HD (MemHD) layer, the Memory
(Mem) layer and the LED layer.
The latter mimics the di↵erent LEDs and receives direct perceptual input from
an eDVS camera. It has got as many neurons as many di↵erent LEDs the eDVS
camera is able to detect. Each LED illuminates in a specific frequency. Because of
this frequency the LEDs can be distinguished. A particular LED forces a particular
neuron in the LED layer to spike. In Figure 3.3 there are three di↵erent LEDs.
The other two layers receive the heading direction from the HD network. Each

12 3.3. Error Detection Network

whether the map and/or its internal measurements are correct. This is the famous
Simultaneous Localization and Mapping (SLAM) problem.
For such a task an ED Network is used, which consists of a N ⇥ N error matrix.
N is the number of neurons of the HD layer. It receives inputs from the MemHD
and the Mem layer. The first excites the rows, and the latter the columns of the
error matrix. Depending on which neuron of the error matrix spikes, the network
detects an error and determines how large this error is. Therefore the error matrix
is divided in three di↵erent errors as shown in the figure 3.4.

Figure 3.4: Error Detection Network: The error detection matrix consists of aN⇥N
matrix and a big error correction layer of size N .

The three di↵erent parts are: no error, small and big error:

No Error is represented by the white neurons in the graphic. No error is if the
same neuron of the MemHD and of the Mem layer spikes. In this system there
is always a neuron on the diagonal of the error matrix active, because both
input layer are dependent on the heading direction. For example if neuron 3
of both layers spike, the row 3 and the column 3 are excited and the error
matrix is tuned in such a way, that only the neuron 33 of the error matrix
spikes, which is on the diagonal.

Big Error is represented by the red neurons in the graphic. An error is determined
as big, if the minimum of the di↵erences of the active neurons of the MemHD
and the Mem layer, modulo the resolution, is larger the some margin. The

Neuromorphic SLAM: 4) Loop closure
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The central part of the error-correcting circuit is the Error
Estimation network (a 2D neuronal array in Fig. ??). This
network consists of a 2D layer of neurons that receive
input from the path integration HD population and from
the memory HD neurons. These two 1D inputs enter the
2D network along different dimensions, their spikes are
integrated by the neurons in the Error Estimation network.
The neuron, for which the two 1D activity bumps overlap,
is activated.

Neurons in the Error Estimation network are connected
to an output layer that consists of two read-out populations,
representing the positive or the negative error. The position
of the activity bump (active neuron) in one of the read-
out populations corresponds to the difference between the
positions of the bumps in the path integration HD and the
memory HD populations and thus represents the magnitude
of the error.

4) Error correction: Apart from the error magnitude, the
error estimation network detects the sign of the error, which
signals if the orientation estimated through path integration
is ahead or behind the orientation that is inferred from the
detected LED and the activated memory HD neuron.

Neurons marked green and blue in Fig. ?? correspond to
a small error that triggers calibration of the path integra-
tion network. Two groups of neurons representing a small
negative error (blue) and a small positive error (green) read
out the sign and magnitude of the (small) estimated error.
To convert the determined error into firing rates of the Shift
neurons, these groups are connected to two pools of speed
correcting neurons. These neurons translate the place-code of
the error read-out neurons (the identity of the single active
neuron represents the error magnitude) to rate code, where
the firing rate of the neural population represents the encoded
value. To achieve this, each neuron in the positive or negative
error population is connected to a certain number of the
speed correcting neurons, proportional to the detected error
magnitude (Fig. ??): e.g., the error neuron that represents
the lowest error is connected to a single speed-correcting
neuron, while an error neuron that represents a high error is
connected to a dozen of speed correcting neurons.

The shift neurons (Scw and Sccw) are driven by plastic
synapses from the motor neurons (Mcw and Mccw), which
send an efference copy of the motor command to the path
integration system. The two speed correcting populations de-
crease or increase the firing rate of the shift neurons: positive
error neurons are excitatory and increase the firing rate, while
negative error neurons are inhibitory and decrease the firing
rate. This temporary correction is then made permanent by
inducing a weight change in the plastic synapses from Mcw

and Mccw to Scw and Sccw according to the following error-
modulated Hebbian learning rule:

DwM!S = (x0 · y1 + y0 · x1) · r · (wmax �wM!S)� x0 · r. (3)

Here, r denotes the reinforcement (error) trace that is set to
1 by the detected error and decays exponentially over time.

The maximal weight is limited by a value of wmax = 120.
Whenever the post-synaptic firing rate is higher than

the pre-synaptic one, the synaptic weight is more likely
to increase: the weight is increased if the pre- and post-
synaptic neurons are active at the same time and the weight
is decreased upon every pre-synaptic spike, not followed
or preceded by a post-synaptic spike. The negative weight
update brings about the property that higher pre-synaptic than
post-synaptic firing rate leads to synaptic weight depression.
Thus, the weight increase or decrease is controlled by the
firing rate of the post-synaptic (Shift) neurons during error
detection.

When the orientation estimation in the path integration
HD matches the LED-induced orientation in memory HD,
the error is zero and the learned synaptic weights determine
the firing rate of the Scw and Sccw neurons and with that the
path integration speed, i.e. the movement speed of the bump
in the path integration HD.

C. Neuromorphic robotic setup
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Correct 
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Input to
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Fig. 4: Spikes-flow in the neuromorphic architecture: Motor
signals are sent to the path integration Head Direction (HD)
network, while visual information from DVS is sent to the
LED layer, connected to the memory HD network. The mem-
ory HD also receives input from the path integration HD. The
memory HD builds the map and drives the error detection
network, which corrects the map and path integration speed.

We evaluate the system’s performance with simulated and
real robotic data in a changing environment. The robot used
in this work is a mobile platform called Pushbot, which
consists of a 10x10 cm chassis with two motors driving two
independent tracks for propulsion. It comprises an embedded
DVS – a neuromorphic event-based camera [?], [?]. Each
pixel of the DVS is sensitive to the temporal change in
luminance and sends out an event using the Address Event
Representation (AER) protocol. The differential values of
the robot’s wheel encoders are used to generate input spike
trains with frequencies proportional to the robot’s angular
velocity. The initial frequency is chosen arbitrarily and is

SLAM 4: Loop closure architecture  
Error-driven learning for self-calibration in a neuromorphic path integration system
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Figure 2: Neural activity during path integration. In the
first half of the simulation, the CW neuron is active, in the
second half the – CCW neuron initiates the HD neural ac-
tivity to move in the other direction.

(at 1ms time step). The network first performs two full
clockwise turns and then two full counter-clockwise turns,
demonstrating that the HD network can indeed integrate ve-
locity signals of different direction. Next, we recorded one
full turn (starting at HD neuron 12) using different firing
rates of the input (AV) neurons, see Fig. 3. The slope of the
firing activity on the HD ring increases as a function of in-
put firing rate. Fig. 4 shows the dependence of the angular
velocity computed from the network activity (bump move-
ment) on the firing rate of the AV neurons. Fig. 4 shows

Figure 3: A full rotation estimated by the HD network for
different firing rates of the input (AV) neurons. The input
firing rate determines the slope of the activity drift and thus
the speed of path integration.

that the speed of the activity bump in the HD population
monotonically increases with increasing input firing rate.
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Figure 4: Dependence of represented angular velocity on
the input firing frequency to the HD neuronal population.

Figure 5: Firing activity during learning driven by a pos-
itive error. The true orientations is further ahead than the
estimated orientation, signaling the network to increase the
input rate which is controlling the shift in the HD popula-
tion.

3.2 Learning the input rates using speed correcting

neurons

In order to show how different firing rates can be learned by
the network, we stimulate specific neurons on the ”correct”
HD ring. Fig. 5 shows firing of the ”correct” HD and HD
neurons, Error Encoding neurons, and the Speed Correct-
ing pools over a simulation of 60 seconds in an example of
positive error. Different neurons in the ”correct” HD popu-
lation are briefly stimulated every 18 seconds and an error
is computed by the network autonomously if the true and
estimated orientation do not match.

In Fig. 5, the first active neuron in the ”correct” HD popu-
lation is the same as the currently active HD neuron. Thus,
the error is zero and learning does not occur. The next time

Speed control
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Figure 6: Continuously showing the true orientation en-
ables the network to match the speed of the moving activ-
ity bump in the HD population to the true angular velocity
of the robot. Here, the true angular velocity (top) is slower
than the initial speed of the activity bump in the HD popula-
tion. However, after detecting a negative error (third row),
the network learns to slow down the input firing rate by re-
cruiting inhibitory speed correcting neurons (bottom). The
learned velocity stays the same after information about the
true heading is removed (after second 110).

a different true orientation is shown (at second 20), which
corresponds to a positive error of 4, leading to 4 neurons in
the excitatory Speed Correcting pool becoming active. The
firing rate of the AV neurons is increased during learning.
After the error signal has vanished, the increased synaptic
weight maintains an increased firing rate of AV neurons.
This can be seen in the effect on the slope of the raster
plot of activity in the HD population (second from top plot
in Fig. 5). When the true orientation is shown for the third
time in this experiment (second 38), the computed error has
a size of 15, hence activating 15 speed correcting neurons.
Again, an increase in firing rate of the AV neurons leads to
a higher slope of the HD neural activity movement.

The following experiment simulates a case when the true
orientation is known for a full turn. Fig. 6 shows neuronal
activity recordings from the Loihi chip when the true ori-
entation is known from 47 to 110 seconds and the ”correct”
HD population is continuously stimulated to represent this
information. In Fig. 6, a set of negative error detecting neu-
rons becomes active and changes the shifting speed of the
neuronal activity in the HD population to match the true
angular velocity of the robot.

By stimulating the true HD neuron at different positions
and recording the resulting path integration behavior on the
HD ring, we evaluated how well different angular velocities
can be learned. We performed five trials of simulation with
each of the presented true velocities. Fig. 7 shows the mean

Figure 7: The learned angular velocity, represented by the
speed of the activity bump in the HD population, driven by
activity of different Error neurons. The initial speed of the
activity bump in the HD corresponds to velocity 100 circ/s
(Error = 0). Different activated error neurons correspond
to different simulated ”correct” velocities. Dots show the
mean and error bars indicate the standard deviation over 5
trials.

and standard deviation of the angular velocity, represented
by the speed of the activity bump in the HD population after
learning, depending on the magnitude of the induced error
(represented by the identity of the active neuron in the Error
estimating population output layers). We can see that the
angular velocities from 8 up to 286 degree per second can
be realized by the network, while the standard deviation of
the learned speed increases slightly for positive errors.

3.3 Convergence with a single visual landmark

In order to evaluate the system’s learning performance over
several encounters with the same landmark, we recorded
activity during 10 simulated turns of the robot observing a
single visual landmark. Landmark detection activates the
corresponding neuron in the ”correct” HD population and
an error is estimated accordingly. The path integration net-
work slowly adjusts its integration speed by decreasing the
weights of plastic synapses.

Fig. 8 shows how the angular velocities, determined from
the network’s activity, change over time in this experiment.
Different colors correspond to trials with different initial
neural angular velocities. The black dashed line corre-
sponds to the true simulated angular velocity. In all trials,
starting with different speeds, the neural network brings the
speed of the moving bump to correspond to the true angular
velocity.
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Figure 6: Continuously showing the true orientation en-
ables the network to match the speed of the moving activ-
ity bump in the HD population to the true angular velocity
of the robot. Here, the true angular velocity (top) is slower
than the initial speed of the activity bump in the HD popula-
tion. However, after detecting a negative error (third row),
the network learns to slow down the input firing rate by re-
cruiting inhibitory speed correcting neurons (bottom). The
learned velocity stays the same after information about the
true heading is removed (after second 110).

a different true orientation is shown (at second 20), which
corresponds to a positive error of 4, leading to 4 neurons in
the excitatory Speed Correcting pool becoming active. The
firing rate of the AV neurons is increased during learning.
After the error signal has vanished, the increased synaptic
weight maintains an increased firing rate of AV neurons.
This can be seen in the effect on the slope of the raster
plot of activity in the HD population (second from top plot
in Fig. 5). When the true orientation is shown for the third
time in this experiment (second 38), the computed error has
a size of 15, hence activating 15 speed correcting neurons.
Again, an increase in firing rate of the AV neurons leads to
a higher slope of the HD neural activity movement.

The following experiment simulates a case when the true
orientation is known for a full turn. Fig. 6 shows neuronal
activity recordings from the Loihi chip when the true ori-
entation is known from 47 to 110 seconds and the ”correct”
HD population is continuously stimulated to represent this
information. In Fig. 6, a set of negative error detecting neu-
rons becomes active and changes the shifting speed of the
neuronal activity in the HD population to match the true
angular velocity of the robot.

By stimulating the true HD neuron at different positions
and recording the resulting path integration behavior on the
HD ring, we evaluated how well different angular velocities
can be learned. We performed five trials of simulation with
each of the presented true velocities. Fig. 7 shows the mean

Figure 7: The learned angular velocity, represented by the
speed of the activity bump in the HD population, driven by
activity of different Error neurons. The initial speed of the
activity bump in the HD corresponds to velocity 100 circ/s
(Error = 0). Different activated error neurons correspond
to different simulated ”correct” velocities. Dots show the
mean and error bars indicate the standard deviation over 5
trials.

and standard deviation of the angular velocity, represented
by the speed of the activity bump in the HD population after
learning, depending on the magnitude of the induced error
(represented by the identity of the active neuron in the Error
estimating population output layers). We can see that the
angular velocities from 8 up to 286 degree per second can
be realized by the network, while the standard deviation of
the learned speed increases slightly for positive errors.

3.3 Convergence with a single visual landmark

In order to evaluate the system’s learning performance over
several encounters with the same landmark, we recorded
activity during 10 simulated turns of the robot observing a
single visual landmark. Landmark detection activates the
corresponding neuron in the ”correct” HD population and
an error is estimated accordingly. The path integration net-
work slowly adjusts its integration speed by decreasing the
weights of plastic synapses.

Fig. 8 shows how the angular velocities, determined from
the network’s activity, change over time in this experiment.
Different colors correspond to trials with different initial
neural angular velocities. The black dashed line corre-
sponds to the true simulated angular velocity. In all trials,
starting with different speeds, the neural network brings the
speed of the moving bump to correspond to the true angular
velocity.

Kreiser et al, submitted to ICRA 2020

Neuromorphic SLAM: Results (calibration)
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Fig. 8: From top to bottom: (1) Activity of three LED
neurons detecting LEDs blinking at different frequencies.
(2) Synaptic weight values from LED to memory HD
neurons. Colors denote the identity of the associated LED.
Stars indicate the true positions of LEDs. The true angular
distances between the LEDs with respect to the robot and
converted to neuron units are annotated in blue while the
learned angular distances are shown in red. Blue rectangles
denote “large error” neuron’s spikes. (3) Activity of the path
integration HD neurons. (4) Robot’s angular velocity inferred
from the neural path integration (blue) and obtained from
wheel encoders (red). Note how mismatch is reduced after
all errors are corrected.

To evaluate the system’s learning performance over several
encounters with the same landmark, we recorded activity
during 10 simulated turns of the robot observing a single
visual landmark. Landmark detection activates the corre-
sponding neuron in the memory HD population and an error
is estimated accordingly. The path integration network slowly
adjusts its integration speed by decreasing the weights of
plastic synapses.

Fig. ?? shows how the angular velocities, determined from
the network’s activity, converge over time to the true value
of the robot’s turning speed. Different colors correspond to
trials with different initial path integration speeds in HD
network. The black dashed line corresponds to the true
angular velocity. In all trials, starting with different speeds,
the neural network converges to match the speed of the
moving bump to the true angular velocity of the robot after
a few turns.

C. Closed-loop robotic experiment

Finally, we examined the interplay of map formation and
path integration calibration in a robotic experiment, creating
a closed-loop setup with the Loihi chip and the Pushbot
robot. The Pushbot is rotating in a small square arena
with 3 LEDs placed on the walls that blink with different
frequencies, see Fig. ?? and Fig. ??.

Fig. ?? shows the outcome of the experiment. The top
panel shows the activity of the three LED neurons, while

the second panel shows the synaptic weights that are formed
during detection. Small blue squares correspond to spikes
emitted from neurons in the ”Large error” population, which
induce forgetting of the previously learned LEDs. The third
panel shows the neural activity in the path integration HD
population and the bottom panel shows angular velocity ob-
tained from wheel encoders and from neural path integration.

It becomes apparent that up to second 50 the estimated and
visually inferred heading directions do not match, as many
error neurons are active (second plot in Fig. ??), leading to
learning and forgetting different associations between LED
neurons and memory HD neurons. In the bottom panel, one
can see that the neural angular velocity is slower than the one
obtained from wheel encoders. From second 60 to 82, the
neural path integration speed becomes closer to the robot’s
angular velocity and errors are detected only once in a while.
Finally, the path integration speed equals the robot’s angular
velocity and no errors are detected. The positions of the
strong synaptic weights between LED neurons and memory
HD neurons are close to true positions of the LEDs, indicated
with stars in the second plot in Fig. ??. Thus, despite the
very coarse resolution in the HD networks and unreliable
detection of the blinking LEDs (upper plot), the system is
capable to both calibrate its path integration speed and update
positions of landmarks to correct values.

IV. CONCLUSION
We developed an SNN architecture for loop closure

detection in a 1D SLAM scenario on the neuromorphic
device Loihi. The neuronal architecture autonomously learns
to match the internal representation of the robot’s angular
velocity to the actual turning speed of the robot and si-
multaneously create a map of landmarks. The neuronal path
integration is realized as the speed of movement of an activity
bump in a neuronal ring attractor network. Learning is gated
by the detected mismatch in locations of landmarks inferred
based on the path integration and from memory.

The network structure is inspired by biological findings
on navigational cell types of rodents and the head direction
network of the fruit fly [?], [?]. This work presents a
first architecture for loop closure detection and autonomous,
online learning for calibration of a path integration system
and map formation in an SNN, realized in neuromorphic
hardware. Despite its proof of concept character, this step is
important to motivate scaling up of neuromorphic hardware
systems.
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took 60 minutes (at 50ms time step); the simulated maps’
area was 2x2m2. Qualitatively, the simulation results show a
faithful representation of the environments.

(a) Environment1 (b) Encoded map1 (c) True collision map1

(d) Environment2 (e) Encoded map2 (f) True collision map2

(g) Environment3 (h) Encoded map3 (i) True collision map3

Fig. 9: Maps learned after 60 min of simulation. The first
column shows simulation environments, the second and third
columns show the learned maps reconstructed from plastic
synaptic weights between PN and CON and the true collision
map, respectively.

To measure the quality of the learned maps quantitatively,
we assigned a score to each learned collision position of the
robot. The score was evaluated using a Gaussian blurring
filter when computing correlation between the ground-truth
and neural-based maps. If the learned position was the same
as the true collision position, the system scored 1 point, if
the learned position deviated from the true position by 1
neuron unit in any direction, the system scored 0.5 point,
etc. The score of the encoded maps was growing linearly
with simulation time, with a slope of 0.25-0.3 of the ideal
score (plots can not be shown here for space constraints),
which reflects accumulation of error at a constant rate during
simulation, due to the accumulation of discretization errors
in both heading direction and position networks.

C. Dynamic mapping
In this section, we demonstrate how depression in plastic

synapses can be used to learn a map in a changing envi-
ronment (also known as dynamic mapping, Fig. 10). The
simulation shown in Fig. 10 was run for 35 minutes. We

started with an environment shown in Fig. 10(a). After 5
minutes of simulation time (at 50ms simulation step), the
inside walls were removed while the robot continued to
navigate in the environment. The final environment is as
shown in Fig. 10(c).

Fig. 10: Demonstration of dynamic mapping. At the begin-
ning, the robot is confined with walls in a small square space
(a). The walls are replaced after 5 minutes forming a larger
square (c). The robot is able to unlearn the previous map.

The map encoded in the plastic synapses after 5 minutes
of simulation is shown in Fig. 10(b). Fig. 10(d) shows the
encoded map after the simulation ended. These results show
that the previously learned collision positions were unlearned
after the walls were removed, if the robot passed the respec-
tive position again without a collision. Our SNN SLAM is
thus not only able to learn the map of a static environment,
but also update the map in a dynamic environment, using
synaptic depression and potentiation.

D. Neuromorphic realization
Fig. 11 shows activity of spiking neurons on the neuro-

morphic device Dynap-se [32] that were wired up to form
the path-integrating architecture. The first plot in the figure
shows the arrangement of neurons on the 4 chips of the
Dynap-se device (each chip being divided into 4 cores of
256 neurons). Figs. 11(2-6) show snapshots of activity on the
chip as the robot turns left (0-9s), stops turning and continues
moving to the west (11s), and then turns to the right, moving
in East direction after 24 seconds of simulation, Fig. 11(6). In
the PN and IPN neural populations, one can observe that the
activity moves according to activity in the HD population,
which is driven by the Turn populations (TR or TL). The
activity peak in the PN population is marked with a black
circle around the purple spikes.

A spiking neural network realized with neuromorphic
hardware is thus able to represent and update the position
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- state estimation, building 
representations  

➡ Pose estimation and map formation

Blatter et al, ISCAS, under rev; Kreiser et al 2018a, b  

➡ Reference frame transformations
- key for linking modalities  

Blum  et al 2017

➡ Reactive loops
- attractors in a sensory-motor loop

Milde et al 2017a,b; Kreiser et al 2018 

Kreiser et al 2018, 2019a, b



Conclusion: We need to redefine computing  
to use neuromorphic hardware
variable

value

function, method

- two-way and three-way relations are well-understood 
- can be adaptive

- attractor states have stronger impact on down-stream structures

input/output

Operating System

➡ neuronal population

- adjustable resolution
- sensory, motor, abstract

- high-/low-dimensional, continuous or discrete (symbolic)

➡ activity state

➡ connectivity structure between populations

➡ interfaces to sensors and motors

➡ a hierarchy of neuronal structures for particular task 

To enable neuronally-inspired computing we need 

to work out its theory, framework, and tools
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