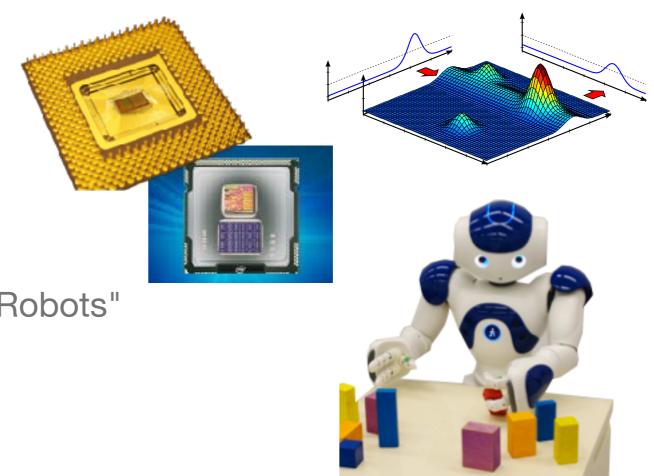


Reliable computation in recurrent, spiking, and plastic networks: from proof of concept to real-world applications

Yulia Sandamirskaya

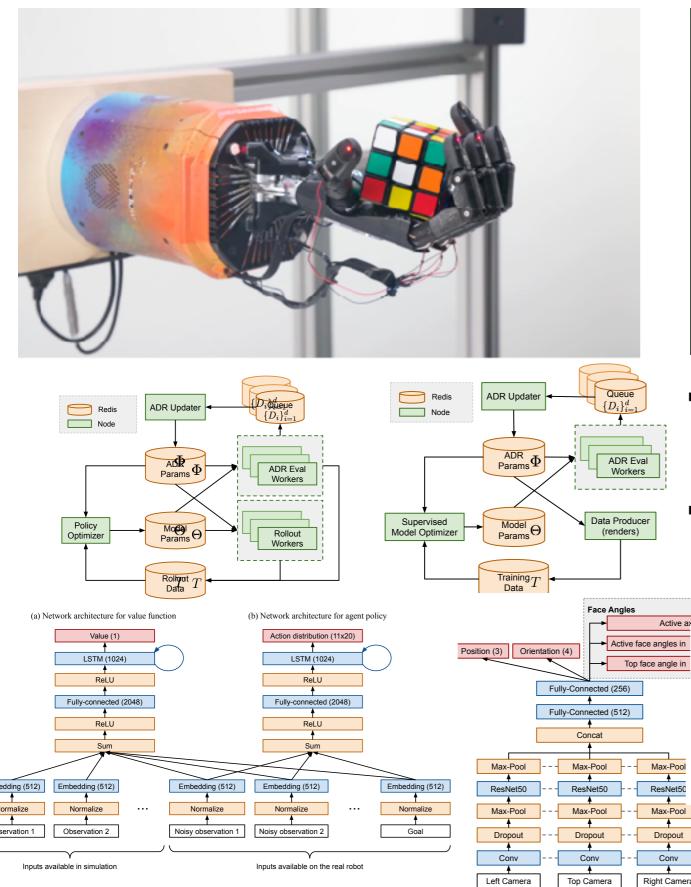
Institute of Neuroinformatics University of Zurich and ETH Zurich

Research group "Neuromorphic Cognitive Robots"



Intelligent systems: Artificial vs Biological

Intelligent systems: Artificial vs Biological



- → $8 \times 8 = 64$ NVIDIA V100 GPUs
 - $+ 8 \times 115 = 920$ worker machines with 32 CPU
- training the policy continuously for several month
 - = 13 thousand years
 - 13,863,132 trainable parameters per network
 - → "This has worked surprisingly well (policy cloning)"
- Study whether the policy has learned to infer and store useful information about the environment in its recurrent state"
 - prediction accuracy rapidly improves to over 80% for certain parameters....

What do we know about biological neuronal systems?

Biological neural networks

Massively parallel

Massively recurrent

- filtering
- stable states

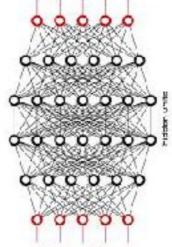
MEvent-based

- save power
- be fast

MPlastic

• can learn on the fly

Artificial neural networks



GPU, parallel computing

- Recurrence is difficult: leads to loops; non-Markovian; no clear input and output
 - Processing is clocked, asynchrony is hard to deal with; no gradients to learn

C "Training". Plasticity is difficult: Convergence? Testing?

➡ Dynamical NS, "Type B"

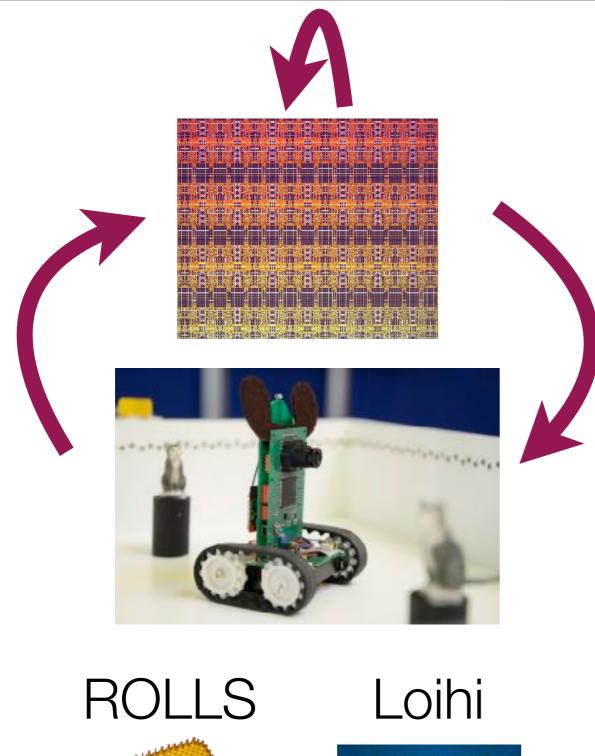
- "Computing" with the substrate
- Control

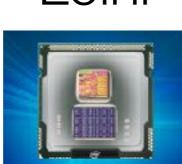
Turing-compliant NS, "Type A"

- Turing Machine: the computing substrate doesn't matter
- Information processing

Can we build, control, and use neuronal systems of Type B?

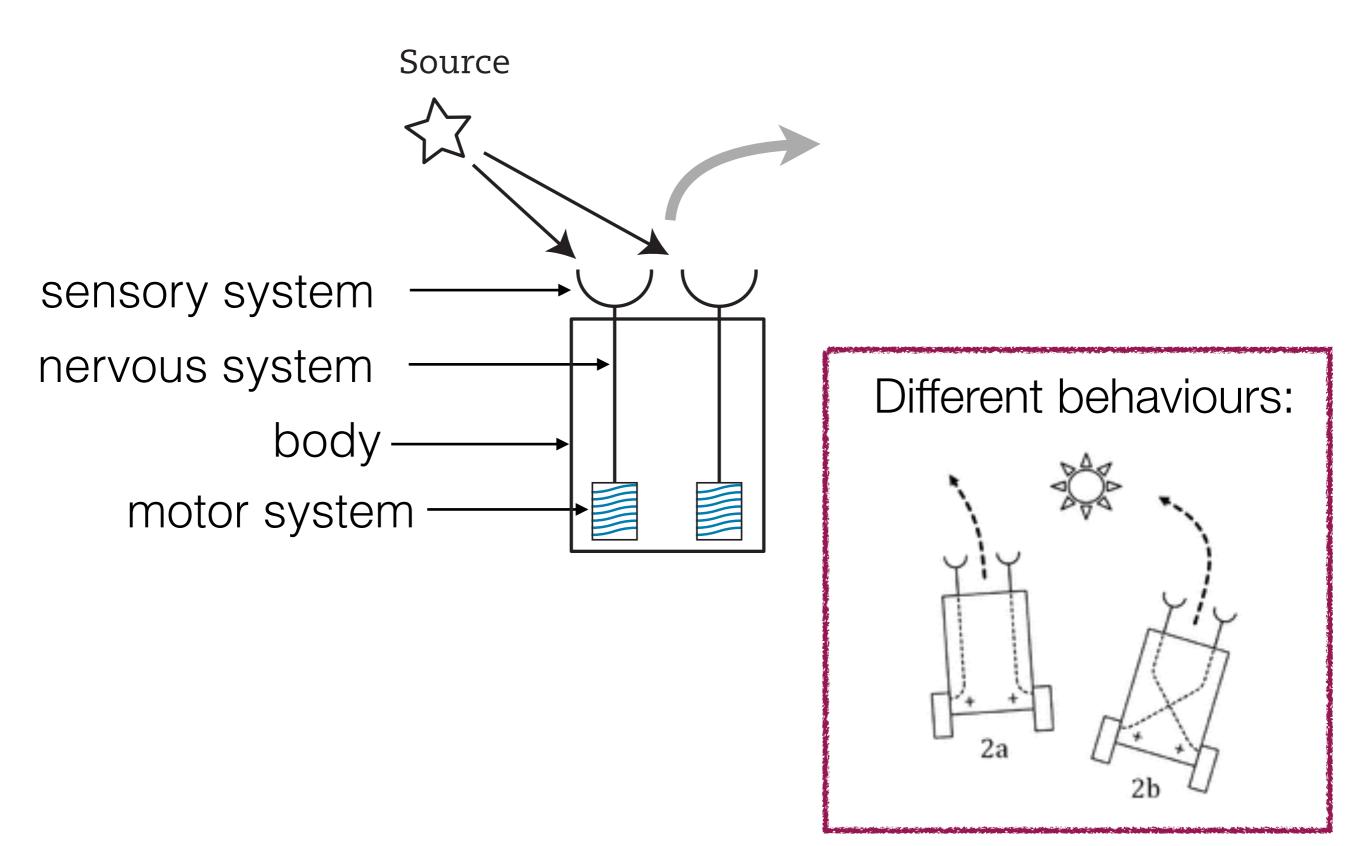
Neuromorphic controllers



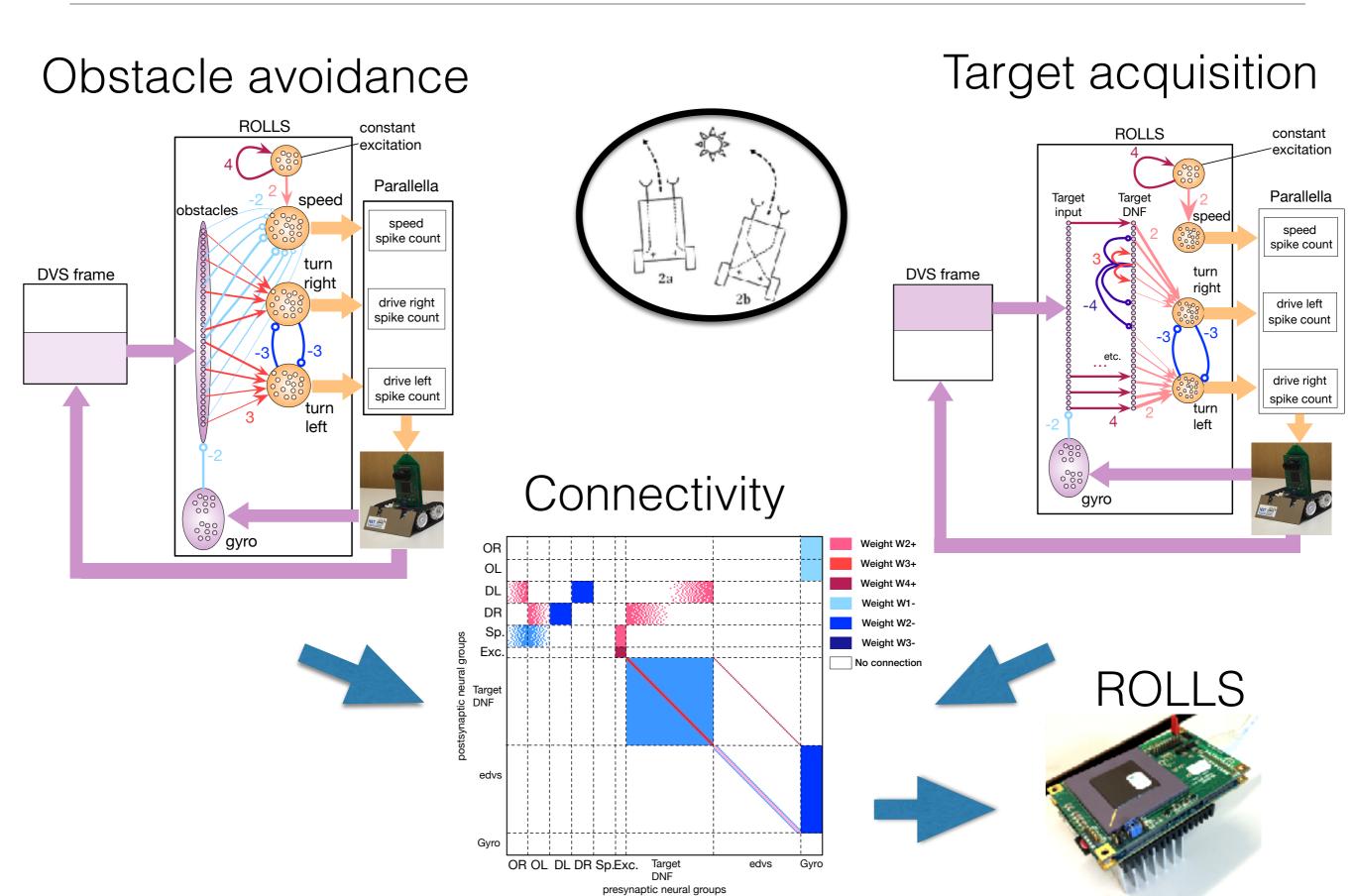


- ➡ Massive concurrence
 - -I/O interfaces
 - "encoding"
 - rate, timing, place
- ➡ Massive recurrence
 - -flexible connectivity
 - attractor dynamics
- ➡Event-based
 - spiking
 - and analogue
- ➡Plastic
 - -on-chip local learning
 - "memory trace"

Reactive behaviour in navigation (Braitenberg)

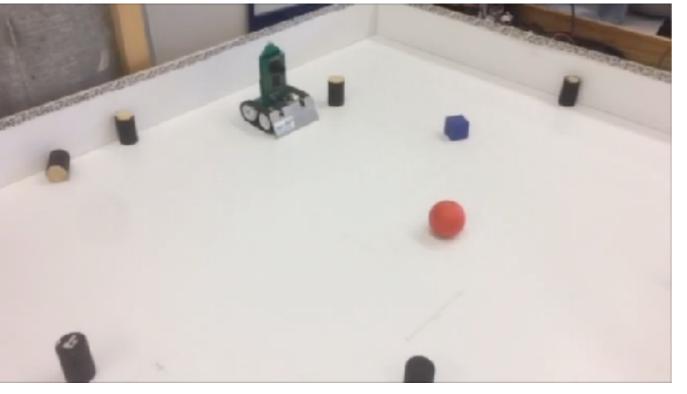


Braitenberg "de luxe" on a neuromorphic chip

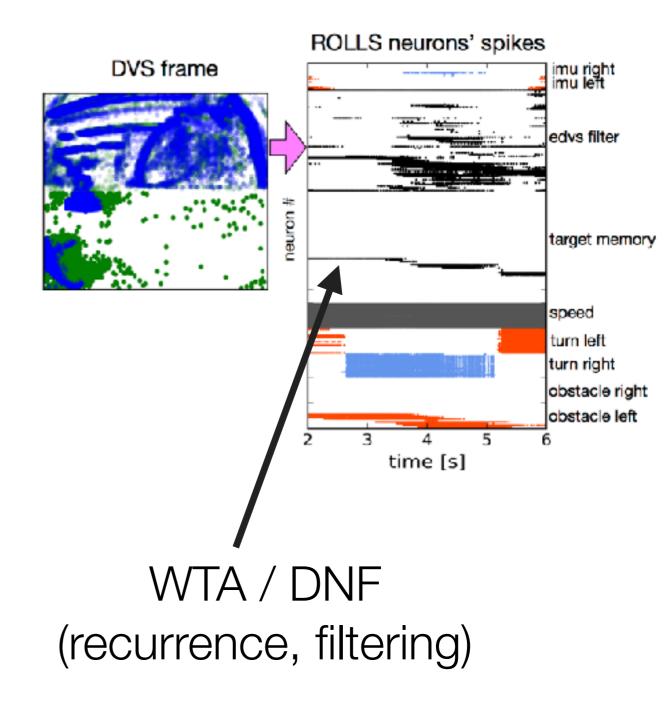


Navigation with a neuromorphic device

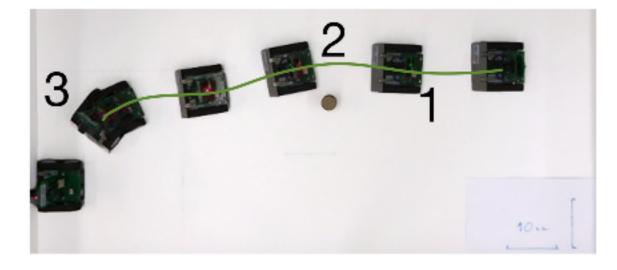
Avoiding obstacles



Output of the sensor and the chip



Target acquisition



Milde, M.; Blum, H.; Dietmüller, A; Sumislawska, D.; Conradt, J.; Indiveri, G. & Sandamirskaya, Y. Obstacle avoidance and target acquisition for robot navigation using a mixed signal analog/digital neuromorphic processing system Frontiers in Neurorobotics, 2017.

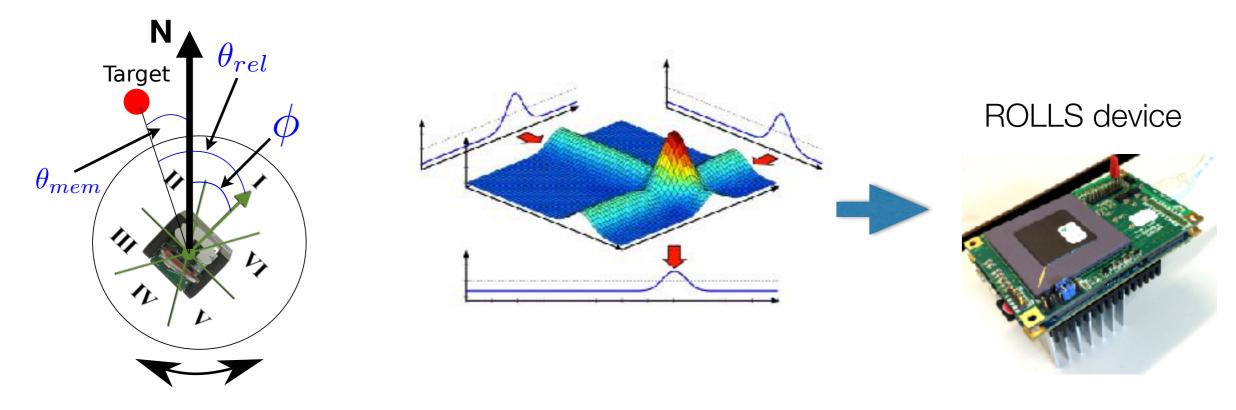
Reference frames

View-based target representation:

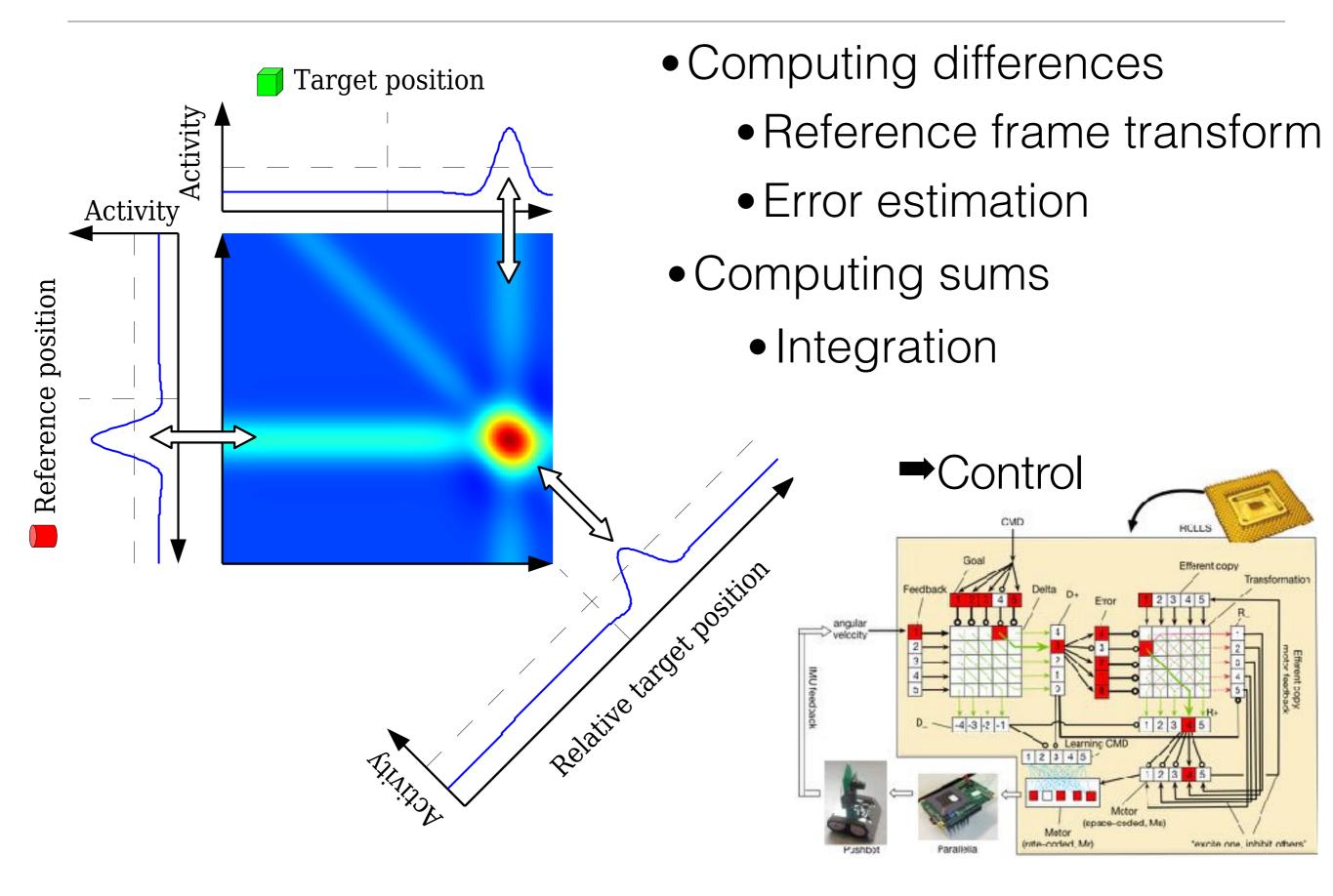
• target in view

• target lost from view

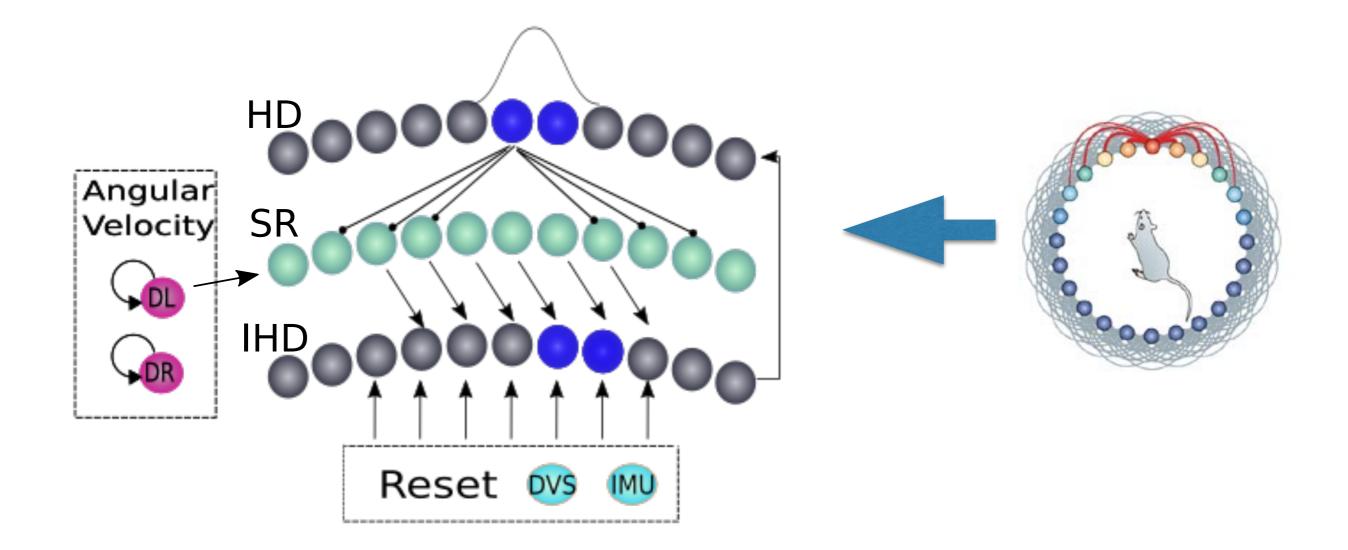
Allocentric target representation: Neural ref. frame transformation:



Neuronal coding of 3-way relations

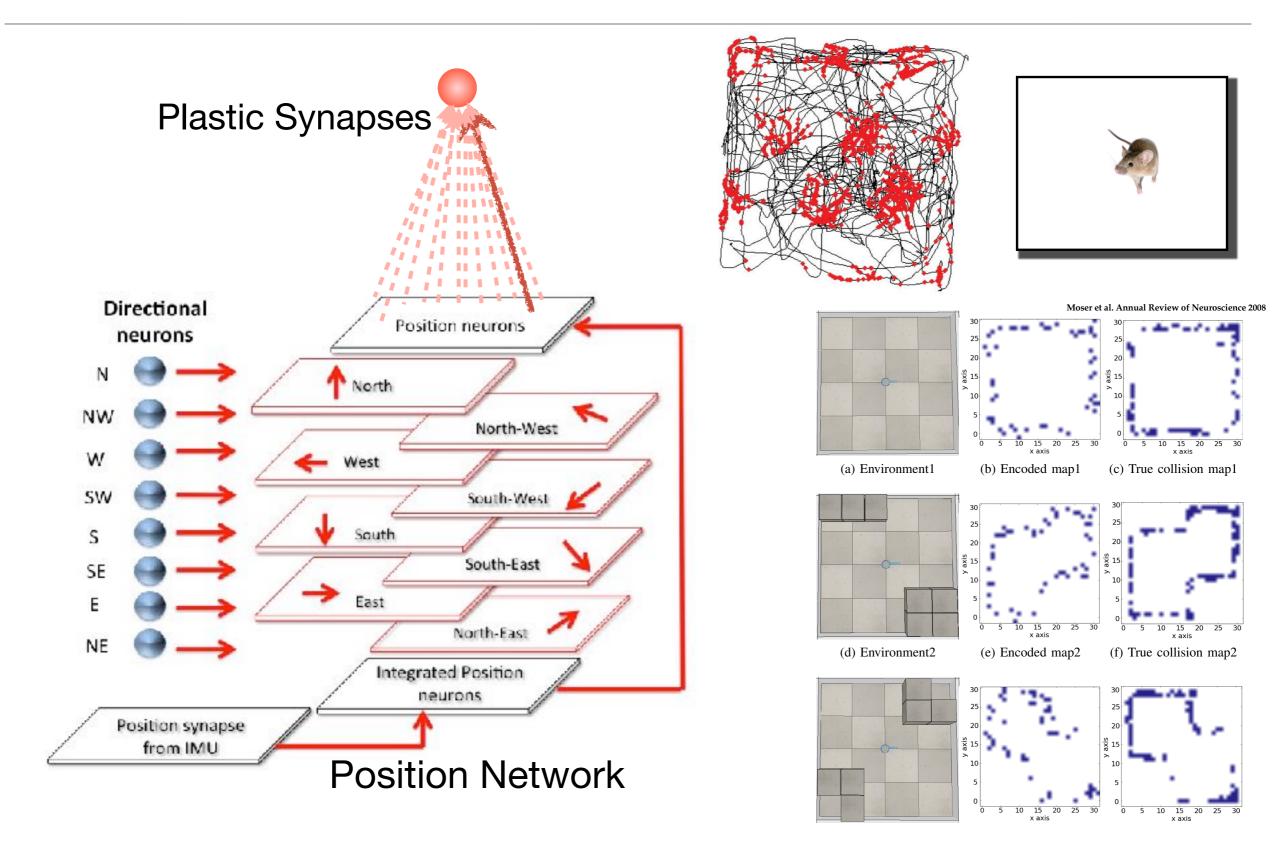


Neuromorphic SLAM: 1) Heading direction / orientation



Kreiser, R.; Cartiglia, M. & Sandamirskaya, Y. A Neuromorphic approach to path integration: a head direction spiking neural network with visually-driven reset. IEEE Symposium for Circuits and Systems, ISCAS, **2018**

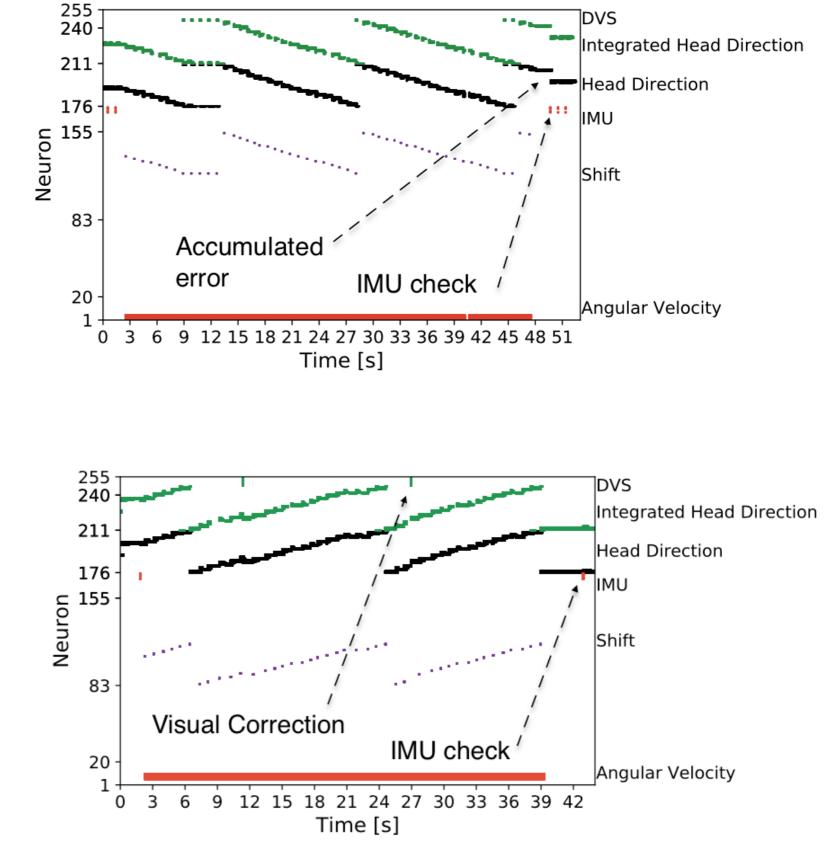
Neuromorphic SLAM: 2) Position, 2D map



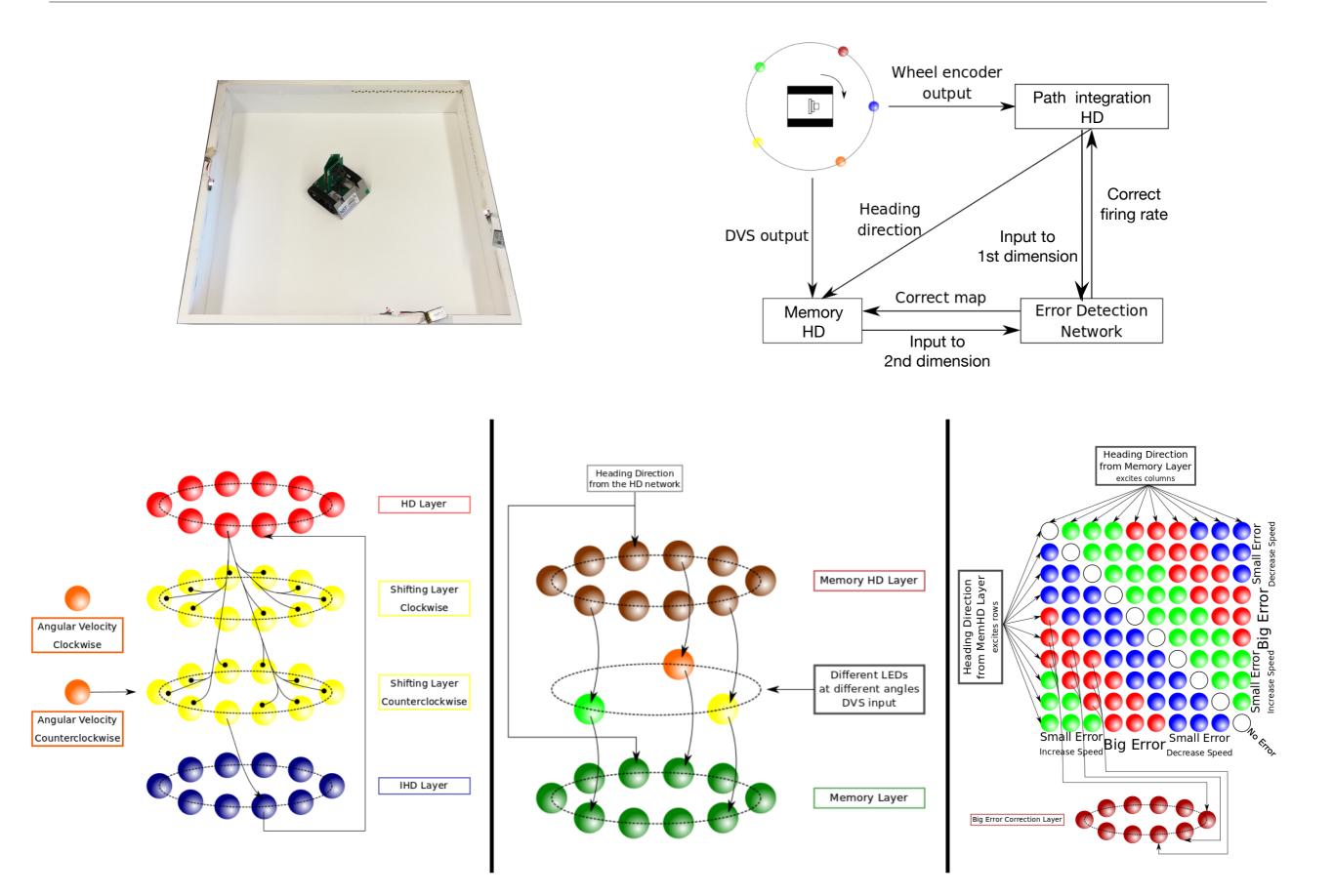
Kreiser, R.; Pienroj, P.; Renner, A. & Sandamirskaya, Y. Pose Estimation and Map Formation with Spiking Neural Networks: towards Neuromorphic SLAM. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, **2018**

Neuromorphic SLAM: 3) Errors, sensor fusion

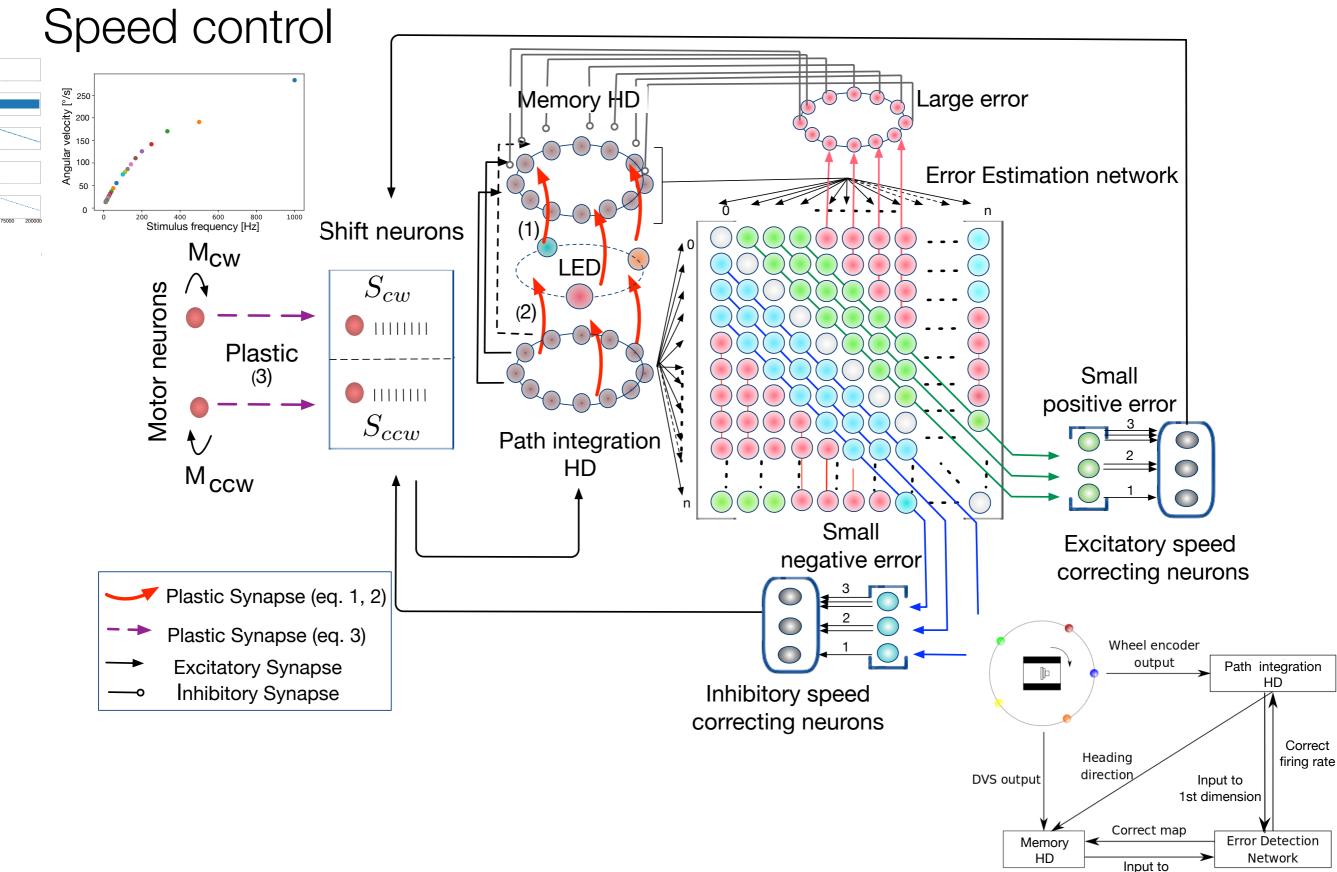
"Proprioception" only



Neuromorphic SLAM: 4) Loop closure

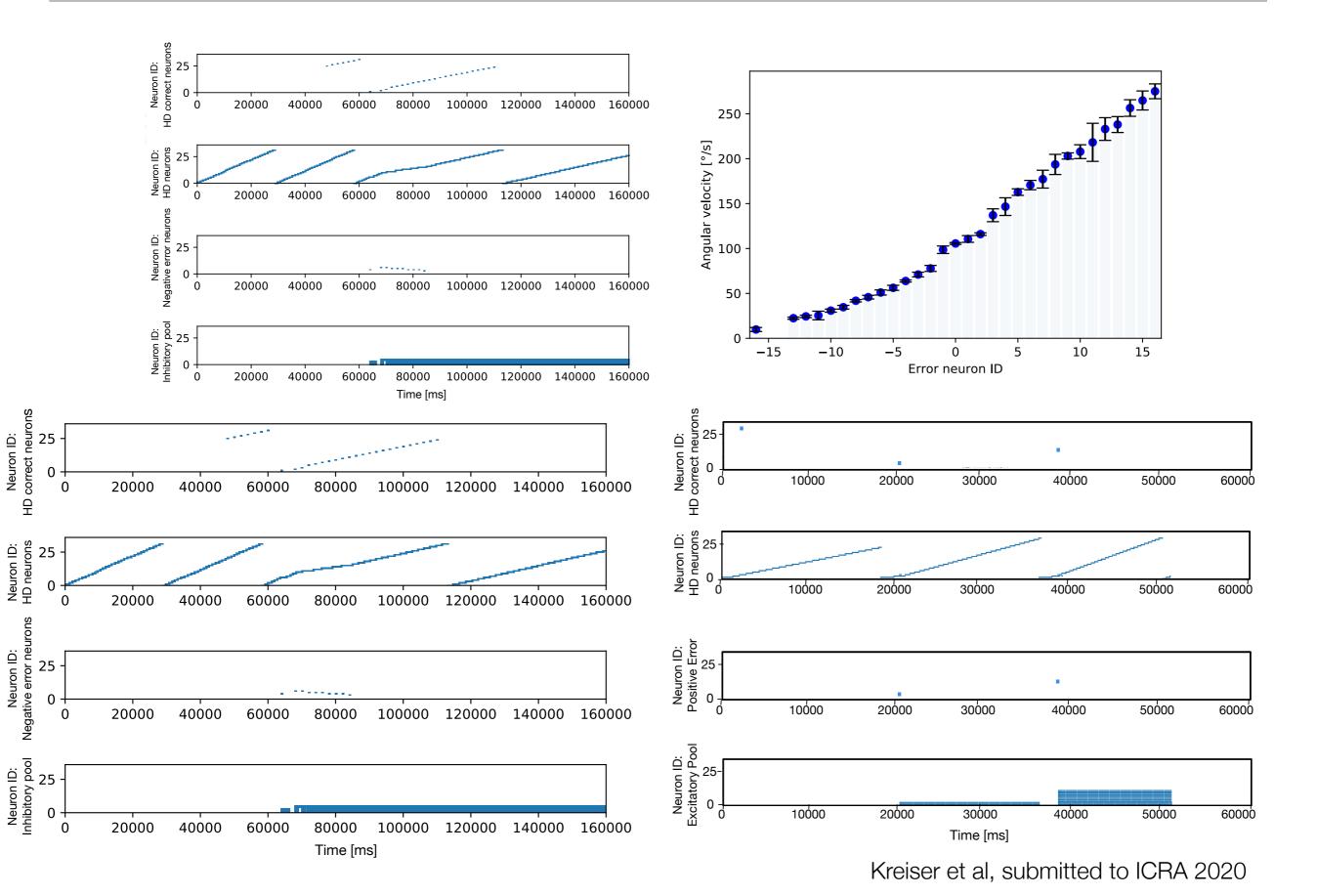


SLAM 4: Loop closure architecture

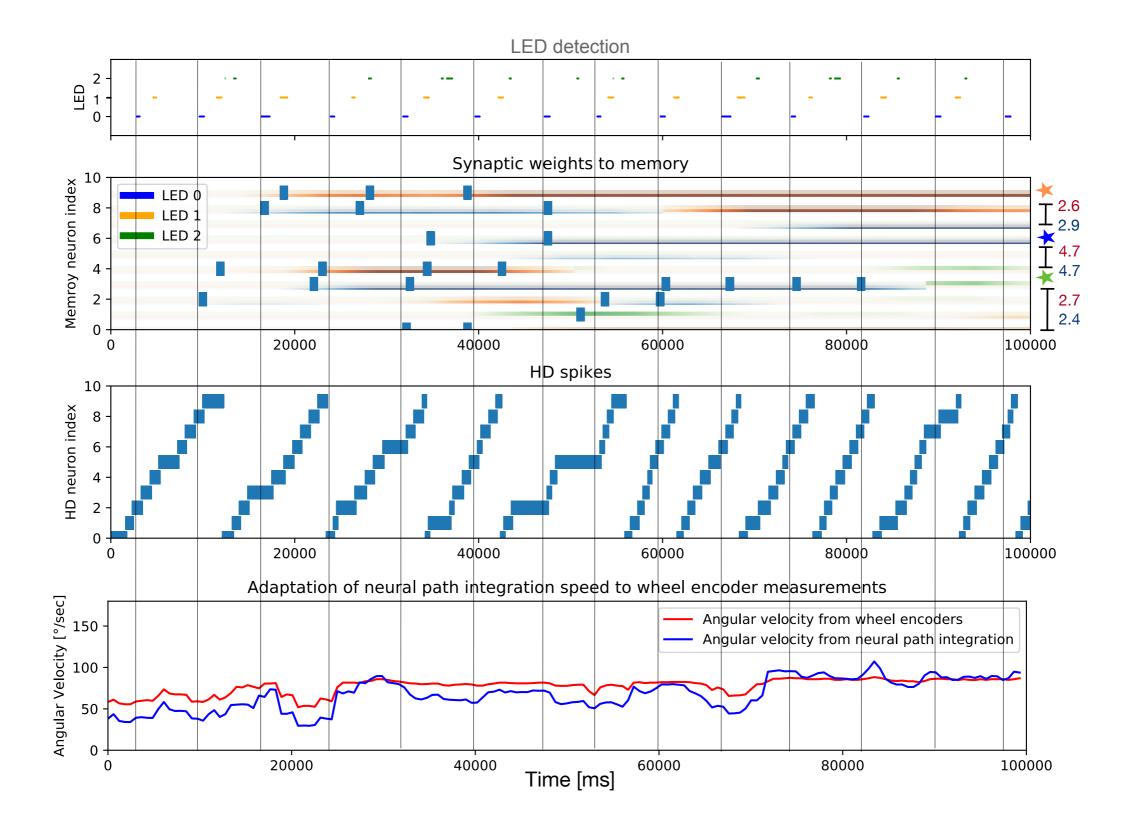


2nd dimension

Neuromorphic SLAM: Results (calibration)



Neuromorphic SLAM: Results (+map formation)



Overview of Neuromorphic building blocks

- attractors in a sensory-motor loop

Milde et al 2017a,b; Kreiser et al 2018

- Reference frame transformations
 - key for linking modalities

Blum et al 2017

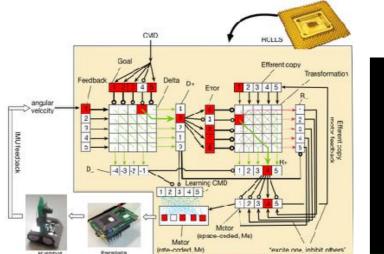
Pose estimation and map formation

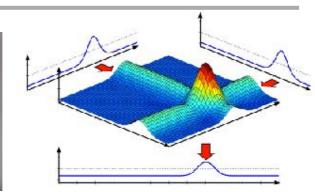
- state estimation, building representations

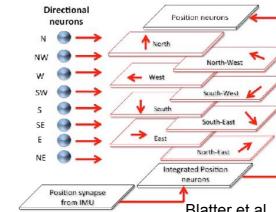
Kreiser et al 2018, 2019a, b

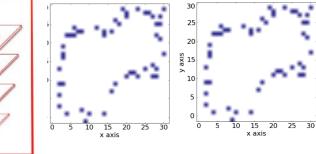
- key element for adaptive behavior

Glatz et al, ICRA2019









Blatter et al, ISCAS, under rev; Kreiser et al 2018a, b

Conclusion: We need to **redefine computing** to use neuromorphic hardware

variable

- neuronal population
 - high-/low-dimensional, continuous or discrete (symbolic)
 - adjustable resolution
 - sensory, motor, abstract

To enable neuronally-inspired computing we need to work out its theory, framework, and tools

- can be adaptive

input/output

interfaces to sensors and motors

Operating System

➡ a hierarchy of neuronal structures for particular task

Thank you!

Marie Curie IF

• FET PROACT

- Ambizione
- Project coordination

FNSNF

- Universität Zürich[™]
- Forschungskredit
- GRC Grant

ZNZ7entrum für Neurowissenschaften Zürich

 Junior Group fellowship

PhD Students

Julien Martel Alpha Renner* Raphaela Kreiser* Claudius Strub* Moritz Milder Dora Sumislawska

MSc, BSc theses

Gwendolyn English Eloy Barrero Llewyn Salt Mathis Richter **Tobias Storck** Christian Bell Claudia Rudolph Jianlin Lu Ammar Bitar Jonathan Müller Kay Müller Sebastian Glatz Valery Metry Alpha Renner **David Niederberger** Raphaela Kreiser

Semester theses

Alexander Dietmüller Héctor Vazquez Mario Blatter Frédéric Debraine Lukas Blässig Lin Jin Lennard de Graf **Michel Frising** Zahra Farsijani Michael Purcell Viviane Yang Davide Plozza **Damiano Steger** Nuria . . .

Sebastian Glatz Herman Blum Matteo Cartiglia David Niederberger Nicolas Känzig Panin Pienroj Paul Joseph Nuria Armengol Jozef Bucko **Balduim Dettling**

NEUROTECH

ROMORPHIC COMPUTING TECHNOLOGY LEADING TO AI REVOLUTION

