AI Transparency in Autonomous Vehicles

Justus Piater, University of Innsbruck

Table of Contents

1. Preface	1
2. Explanation of black-box models	3
3. Interpretable Models	5
4. Conclusions	9
5. References	11

1. Preface

1.1. Driving is a very complex activity.

[mix75689 on Youtube¹]

1.2. Driving is a high-stakes activity.

Like piloting aircraft, but distributed.

After failure we must find and fix the cause.

[Insurance Institute for Highway Safety, USA, 2018²]

"IIHS test drives of the Model S on public roads suggest Autopilot may be confused by lane markings and road seams where the highway splits."

¹ https://www.youtube.com/watch?v=NnUijTgk9rE

² https://www.iihs.org/news/detail/fatal-tesla-crash-highlights-risk-of-partial-automation

1.3. We want to be able to trust our automatic driver. (I)

If our car jolts sideways for no particular reason, we want to understand why. Otherwise we won't trust it.

[Josiah King on Youtube³]

1.4. We want to be able to trust our automatic driver. (II)

Having been driven impeccably through downtown rush hour and on highways, would I trust it to drive me ... here?

Would I trust it to *refuse* to drive me here?

This is *extrapolation*.

[RM Videos on Youtube⁴]

1.5. How can I trust my AI system?

- It worked yesterday \Rightarrow it will work today.
- If it *did not* perform impeccably in the past, or if I *cannot tell* whether it does the right thing: credit scoring
 - I want to understand the algorithm and how it was trained.

This would often motivate me *not* to trust the system...

- I want to understand what *the system* understands! (AI Transparency)
- ...

³ https://www.youtube.com/watch?v=6y1e0skfJts

⁴ https://www.youtube.com/watch?v=jPyYGw9Jn6w

1.6. Why don't I trust my AI system?

There is a *mismatch* between [Lipton 2016, Doshi-Velez and Kim 2017]

• the *training objectives* (prediction metrics)

and

• *real-world cost* (my life).

Real-world cost also depends on *secondary factors* (besides prediction metrics) that are often *hard to model*:

- Causality (as opposed to just correlation)
 - E.g.: Use of *context* = both strength and weakness. Bushes to aid lane following
- Transferability
 - to unfamiliar situations (extrapolation outside the training set)
 - to adversarial environments
- Ethical considerations: fairness, ...
- Informativeness
 - to humans, as decision support

1.7. How can I understand my AI system?

- Explain black-box models post-hoc
- Learn interpretable models

2. Explanation of black-box models

2.1. Explanation of Neural Networks for Image Analysis

Heat map h(x) of the *influence* of each pixel of input image x on output g(x)

• Gradient-based methods:

$$h(x) = \nabla_x g(x)$$

• Layerwise Relevance Propagation (LRP) [Bach et al. 2015, Montavon et al. 2018]

$$R_{i}^{L} = g(x)$$

$$R_{i}^{l} = \sum_{j} \frac{x_{i}^{l}(W^{l})_{ji}^{+}}{\sum_{k} x_{k}^{l}(W^{l})_{jk}^{+}} R_{j}^{l+1}$$
Classification
$$Pixel-wise Explanation$$
Classifier
$$no cat = \bigoplus_{no cat = \sum_{no cat =$$

2.2. LRP: Evidence Four and Against

[Bach et al. 2015]

2.3. We know that classification can be attacked.

Single-pixel changes that affect the classification result [Su et al. 2019]

CAR(99.7%)

FROG(99.9%)

DEER AIRPLANE(85.3%)

Teapot(24.99%) Joystick(37.39%)

Bassinet(16.59%) Paper Towel(16.21%)

2.4. Explanations can be attacked too!

[Dombrowski et al. 2019]

2.5. Classical NN do not learn *Concepts*.

2.6. Classical NN have no idea what's going on.

[Lake et al. 2017]

Image captions generated by a deep NN [Karpathy and Fei-Fei 2017; code⁵]

3. Interpretable Models

3.1. Probabilistic Program Induction

[Lake et al. 2015]

⁵ https://github.com/karpathy/neuraltalk2

3.2. Probabilistic Program Induction

 $\begin{array}{l} \textbf{procedure GENERATETYPE} \\ \kappa \leftarrow P(\kappa) \qquad \triangleright \text{ Sample number of parts} \\ \textbf{for } i = 1 \dots \kappa \text{ do} \\ n_i \leftarrow P(n_i | \kappa) \qquad \triangleright \text{ Sample number of sub-parts} \\ \textbf{for } j = 1 \dots n_i \text{ do} \\ s_{ij} \leftarrow P(s_{ij} | s_{i(j-1)}) \triangleright \text{ Sample sub-part sequence} \\ \textbf{end for} \\ R_i \leftarrow P(R_i | S_1, ..., S_{i-1}) \qquad \triangleright \text{ Sample relation} \\ \textbf{end for} \\ \psi \leftarrow \{\kappa, R, S\} \\ \textbf{return @GENERATETOKEN}(\psi) \qquad \triangleright \text{ Return program} \end{array}$

procedure GENERATETOKEN(ψ)

 $\begin{array}{ll} \text{for } i=1...\kappa \text{ do} & \land \\ S_i^{(m)} \leftarrow P(S_i^{(m)}|S_i) & \triangleright \text{ Add motor variance} \\ L_i^{(m)} \leftarrow P(L_i^{(m)}|R_i,T_1^{(m)},...,T_{i-1}^{(m)}) \\ & \triangleright \text{ Sample part's start location} \\ T_i^{(m)} \leftarrow f(L_i^{(m)},S_i^{(m)}) \triangleright \text{ Compose a part's trajectory} \\ \text{end for} \\ A^{(m)} \leftarrow P(A^{(m)}) \\ I^{(m)} \leftarrow P(I^{(m)}|T^{(m)},A^{(m)}) \\ & \triangleright \text{ Sample affine transform} \\ I^{(m)} \leftarrow P(I^{(m)}|T^{(m)},A^{(m)}) \\ & \triangleright \text{ Sample image} \\ \text{return } I^{(m)} \end{array}$

[Lake et al. 2015]

3.3. Probabilistic Program Induction

Training item with model's five best parses

3.4. Capsule Networks

"A capsule is a group of neurons whose *activity vector* represents the instantiation parameters of a specific type of entity such as an object or an object part." [Sabour et al. 2017]

3.5. Capsule Networks

By squashing, couplings c_{ij} are intended to form a parse tree.

3.6. Sparse Parse Trees with y-Capsules

- Original CapsNets do not produce sparse parse trees.
- γ-CapsNets do. [David Peer, Sebastian Stabinger, Antonio Rodríguez Sánchez; in progress]
 - Features are more human-interpretable.
 - Classification results are *dramatically more robust to adversarial attacks* than original CapsNets.

Top: Random training image. *Middle:* Average of 5 synthetic images optimizing that output capsule for γ -CapsNet. *Bottom:* Ditto for original CapsNet.

7

3.7. Learning Symbols From Sensorimotor Interaction

[Ugur et al. 2014]

3.8. Planning Using Learned Symbols

[Ugur and Piater 2015]

3.9. Deep Symbolic Reinforcement Learning Unsupervised learning Reinforcement learning of Compositionally structured of mapping from highmapping from symbolic symbolic representation dimensional raw input representation to action with to low-dimensional symbolic maximum expected reward representation over time Neural Symbolic back end front end Sensory Motor Reward Agent input output Environment

[Garnelo et al. 2016]

- Conceptual abstraction for transfer learning, planning, communication, ...
- Compositional structure (here: probabilistic first-order logic)
- Common-sense priors and causal rules can be wired into the representation

3.10. Interpretable Models Can Be Powerful.

- Monolithic model with many parameters
 - powerful model without feature engineering
 - hard to interpret
- Structured model with many parameters [Rudin 2019]
 - powerful (but hard-to-interpret) backend learns interpretable concepts
 - interpretable (but powerful) frontend learns ultimate objective

4. Conclusions

4.1. What Can We Learn From (Human) Biology?

Computers are good at

- symbolic reasoning
- pattern classification and regression
- Computers are poor at
- forming symbols
- functional understanding

Lessons:

• We should work on *symbol formation / concept learning*.

(Some approaches: clustering, autoencoders, CapsNets, Deep Symbolic RL)

• We should work on *functional understanding*.

(Some approaches: physics-based simulation; intuitive physics [Battaglia et al. 2013]; also builds on concepts)

- The human visual system is not monolithic but is made up of *specialized modules and pathways* (dorsal/ventral, FFA, ...)
 - Traffic signs should be OCR'ed.
- The human visual system is limited.
 - Success of autonomous vehicles hinges on *sensors* that outperform humans.

[Eykholt et al. 2018]

4.2. Conclusion

- Vision is more than ML on pixels.
- The "Vision Problem" cannot be solved without solving the "AI Problem".
- Unless AI systems gain substantially more (*structural, causal, functional, cultural*) *understanding*, I will not trust them to drive me here:

• Learned *conceptual abstractions* can go a long way towards *extrapolation* and *explanation* capabilities, building *performance* and *trust*.

5. References

5.1. References

- S. Bach, A. Binder, G. Montavon, F. Klauschen, K. Müller, W. Samek, "On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation¹". PLOS ONE 10, 2015.
- P. Battaglia, J. Hamrick, J. Tenenbaum, "Simulation as an engine of physical scene understanding²". *Proceedings of the National Academy of Sciences* 110(45), pp. 18327–18332, 2013.
- A. Dombrowski, M. Alber, C. Anders, M. Ackermann, K. Müller, P. Kessel, Explanations Can Be Manipulated and Geometry Is to Blame³, 2019.
- F. Doshi-Velez, B. Kim, *Towards A Rigorous Science of Interpretable Machine Learning*⁴, 2017.
- K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, D. Song, "Robust Physical-World Attacks on Deep Learning Models". *International Conference on Computer Vision and Pattern Recognition*, 2018.
- M. Garnelo, K. Arulkumaran, M. Shanahan, "Towards Deep Symbolic Reinforcement Learning⁵". *Deep Reinforcement Learning Workshop*, 2016.
- A. Karpathy, L. Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions⁶". *IEEE Transactions on Pattern Analysis and Machine Intelligence* 39, pp. 664–676, 2017.
- B. Lake, R. Salakhutdinov, J. Tenenbaum, "Human-Level Concept Learning through Probabilistic Program Induction⁷". *Science* 350, pp. 1332–1338, 2015.
- B. Lake, T. Ullman, J. Tenenbaum, S. Gershman, "Building Machines That Learn and Think like People⁸". *Behavioral and Brain Sciences* 40, 2017.
- Z. Lipton, "The Mythos of Model Interpretability⁹". *ICML Workshop on Human Interpretability in Machine Learning*, 2016.
- G. Montavon, W. Samek, K. Müller, "Methods for Interpreting and Understanding Deep Neural Networks¹⁰". *Digital Signal Processing* 73, pp. 1–15, 2018.
- C. Rudin, "Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead¹¹". *Nature Machine Intelligence* 1, pp. 206–215, 2019.
- S. Sabour, N. Frosst, G. Hinton, "Dynamic Routing Between Capsules". *Advances in Neural Information Processing Systems 30*, pp. 3856–3866, 2017.
- J. Su, D. Vargas, K. Sakurai, "One Pixel Attack for Fooling Deep Neural Networks¹²". *IEEE Transactions on Evolutionary Computation* 23, pp. 828–841, 2019.
- E. Ugur, S. Szedmak, J. Piater, "Bootstrapping paired-object affordance learning with learned single-affordance features¹³". *The Fourth Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics*, pp. 476–481, 2014.
- E. Ugur, J. Piater, "Bottom-Up Learning of Object Categories, Action Effects and Logical Rules: From Continuous Manipulative Exploration to Symbolic Planning¹⁴". *International Conference on Robotics and Automation*, pp. 2627–2633, 2015.

¹ http://dx.doi.org/10.1371/journal.pone.0130140

² http://dx.doi.org/10.1073/pnas.1306572110 ³ https://arxiv.org/abs/1906.07983 ⁴ https://arxiv.org/abs/1702.08608 ⁵ http://arxiv.org/abs/1609.05518

 ⁵ http://arxiv.org/abs/1609.05518
 ⁶ http://dx.doi.org/10.1109/TPAMI.2016.2598339
 ⁷ http://dx.doi.org/10.1126/science.aab3050
 ⁸ http://dx.doi.org/10.1017/S0140525X16001837
 ⁹ https://arxiv.org/abs/1606.03490
 ¹⁰ http://dx.doi.org/10.1016/j.dsp.2017.10.011
 ¹¹ http://dx.doi.org/10.1038/s42256-019-0048-x
 ¹² http://dx.doi.org/10.1109/TEVC.2019.2890858
 ¹³ https://iis.uibk.ac.at/public/papers/Ugur-2014-ICDLEPIROB-119.pdf
 ¹⁴ https://iis.uibk.ac.at/public/papers/Ugur-2015-ICRA.pdf