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1. Preface
1.1. Driving is a very complex activity.

[mix75689 on Youtube1]

1.2. Driving is a high-stakes activity.
Like piloting aircraft, but distributed.
After failure we must find and fix the cause.

[Insurance Institute for Highway Safety, USA, 20182]
“IIHS test drives of the Model S on public roads suggest Autopilot may be
confused by lane markings and road seams where the highway splits.”

1 https://www.youtube.com/watch?v=NnUijTgk9rE
2 https://www.iihs.org/news/detail/fatal-tesla-crash-highlights-risk-of-partial-automation
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Preface

1.3. We want to be able to trust our automatic driver. (I)
If our car jolts sideways for no particular reason, we want to understand why.
Otherwise we won’t trust it.

[Josiah King on Youtube3]

1.4. We want to be able to trust our automatic driver. (II)
Having been driven impeccably through downtown rush hour and on highways,
would I trust it to drive me … here?

Would I trust it to refuse to drive me here?

This is extrapolation.

[ RM Videos on Youtube4]

1.5. How can I trust my AI system?

• It worked yesterday ⇒ it will work today.

• If it did not perform impeccably in the past, or
if I cannot tell whether it does the right thing:

credit scoring

• I want to understand the algorithm and how it was trained.

This would often motivate me not to trust the system…

• I want to understand what the system understands! (AI Transparency)

• …

3 https://www.youtube.com/watch?v=6y1e0skfJts
4 https://www.youtube.com/watch?v=jPyYGw9Jn6w
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Explanation of black-box models

1.6. Why don’t I trust my AI system?
There is a mismatch between [Lipton 2016, Doshi-Velez and Kim 2017]

• the training objectives (prediction metrics)

and

• real-world cost (my life).

Real-world cost also depends on secondary factors (besides prediction metrics)
that are often hard to model:

• Causality (as opposed to just correlation)

• E.g.: Use of context = both strength and weakness.

Bushes to aid lane following

• Transferability

• to unfamiliar situations (extrapolation outside the training set)

• to adversarial environments

• Ethical considerations: fairness, …

• Informativeness

• to humans, as decision support

1.7. How can I understand my AI system?

• Explain black-box models post-hoc

• Learn interpretable models

2. Explanation of black-box models

2.1. Explanation of Neural Networks for Image Analysis
Heat map  of the influence of each pixel of input image  on output 

• Gradient-based methods:

• Layerwise Relevance Propagation (LRP) [Bach et al. 2015, Montavon et al.
2018]
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Explanation of black-box models

2.2. LRP: Evidence Four and Against

[Bach et al. 2015]

2.3. We know that classification can be attacked.

Single-pixel changes that affect the classification result [Su et al. 2019]

2.4. Explanations can be attacked too!

Original Image Manipulated Image

[Dombrowski et al. 2019]
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Interpretable Models

2.5. Classical NN do not learn Concepts.

We parse digits into characteristic
strokes.

We interpret structure, function, etc.

 

We would like the system to have a
clear concept of structure, support, etc.

2.6. Classical NN have no idea what’s going on.

[Lake et al. 2017]

Image captions generated by a deep NN [Karpathy and Fei-Fei 2017; code5]

3. Interpretable Models

3.1. Probabilistic Program Induction

[Lake et al. 2015]

5 https://github.com/karpathy/neuraltalk2
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Interpretable Models

3.2. Probabilistic Program Induction

[Lake et al. 2015]

3.3. Probabilistic Program Induction

[Lake et al. 2015]

3.4. Capsule Networks

“A capsule is a group of neurons whose activity vector represents the instantiation
parameters of a specific type of entity such as an object or an object part.”
[Sabour et al. 2017]
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Interpretable Models

3.5. Capsule Networks

Activity vectors 

• Norm: probability that the entity exists

• Orientation: instantiation parameters of the entity

• By squashing, couplings  are intended to form a
parse tree.

• Predictions
 from

lower capsule  to
higher capsule 

•  learned via
backpropagation

Iterate (RBA):

3.6. Sparse Parse Trees with γ-Capsules

• Original CapsNets do not produce sparse parse trees.

• γ-CapsNets do. [David Peer, Sebastian Stabinger, Antonio Rodríguez Sánchez;
in progress]

• Features are more human-interpretable.

• Classification results are dramatically more robust to adversarial attacks
than original CapsNets.

Top: Random training image. Middle: Average of 5 synthetic images optimizing
that output capsule for γ-CapsNet. Bottom: Ditto for original CapsNet.
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Interpretable Models

3.7. Learning Symbols From Sensorimotor Interaction

[Ugur et al. 2014]

3.8. Planning Using Learned Symbols

[Ugur and Piater 2015]

3.9. Deep Symbolic Reinforcement Learning

[Garnelo et al. 2016]

• Conceptual abstraction for transfer learning, planning, communication, …

• Compositional structure (here: probabilistic first-order logic)

• Common-sense priors and causal rules can be wired into the representation

8



Conclusions

3.10. Interpretable Models Can Be Powerful.

• Monolithic model with many parameters

• powerful model without feature engineering

• hard to interpret

• Structured model with many parameters [Rudin 2019]

• powerful (but hard-to-interpret) backend learns interpretable concepts

• interpretable (but powerful) frontend learns ultimate objective

4. Conclusions

4.1. What Can We Learn From (Human) Biology?

Computers are good at

• symbolic reasoning

• pattern classification and regression

Computers are poor at

• forming symbols

• functional understanding

Lessons:

• We should work on symbol formation / concept learning.

(Some approaches: clustering, autoencoders, CapsNets, Deep Symbolic RL)

• We should work on functional understanding.

(Some approaches: physics-based simulation; intuitive physics [Battaglia et al.
2013]; also builds on concepts)

• The human visual system is not monolithic but is
made up of specialized modules and pathways
(dorsal/ventral, FFA, …)

• Traffic signs should be OCR’ed.

• The human visual system is limited.

• Success of autonomous vehicles hinges on
sensors that outperform humans.

 

[Eykholt et al. 2018]
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Conclusions

4.2. Conclusion

• Vision is more than ML on pixels.

• The “Vision Problem” cannot be solved without solving the “AI Problem”.

• Unless AI systems gain substantially more (structural, causal, functional,
cultural) understanding, I will not trust them to drive me here:

  

• Learned conceptual abstractions can go a long way towards extrapolation and
explanation capabilities, building performance and trust.
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