

Why a neurocognitive understanding of human road users is needed to ensure safety and acceptance of automated vehicles

Dr. Gustav Markkula

Human Factors & Safety, Institute for Transport Studies University of Leeds

Presentation at Cognitive Vehicles Workshop, IROS 2019 Macau, 2019-11-08

How to make AVs that can successfully coexist with humans?

→ By developing high-fidelity models of human road user behaviour

What kinds of models?

→ Combination of data-driven and neurocognitive models

AV deployment: two main risks

Human frustration

subtleties of local interactions near-crashes

Human injury

crashes

(Li et al., 2019, IROS)

Why high-fidelity models of human behaviour?

(a) No LMs.

(b) Passing static obstacle.

(Anderson et al., 2019, IROS)

- To make...
- ... AVs drive like humans?
- ... online AV predictions about human behaviour
- ... agents for virtual environments, for simulated AV testing

Future GT Trajectory Observed Trajectory **Predicted Position** Currently no humans here...

(Waymo Safety Report 2018)

Data-driven models

Achieve realistic-looking routine traffic

Challenges in relation to "main risks":

Human behaviour in (near-)crashes
 Very rare in any real-traffic dataset

 Human behaviour in local interactions
 How do we know models are capturing the important subtleties?

Complement with white-box neurocognitive models

Insight into how mechanisms generalise

Framework for routine and (near-)crash driving

Framework for routine and (near-)crash driving

Near-crash driving

#2. Accumulation of evidence of various kinds

#1. Intermittent (motor primitive) adjustments

#3. Magnitude heuristics tuned to routine driving

#4. Sensory predictions

Routine driving

Closed-loop Open-loop

Short delays Long, random delays

Well-adjusted control Under- and overreactions

(Markkula, 2014, 2015; Markkula et al, 2018 Biol Cyb)

... Explains routine and (near-)crash braking

(Xue et al., 2018, Acc Anal Prev)

... Explains routine and (near-)crash braking

(Victor et al, 2015, TRB report)

Unpublished data removed

"Predictive processing" extension explains response to automation failures

(Piccinini et al, 2019, Hum Factors)

ACC

CC

Using EEG to peek into the decision process?

Unpublished data removed

Generalising to road crossing interactions

(Giles et al., 2019)

interACT

Generalising to road crossing interactions

(Giles et al., 2019)

Generalising to road crossing interactions

D = -28.17

S = -28.33

C = -28.04

D = -26.76

S = -30.91

C = -29.80

D = -20.96

S = -21.94

C = -22.13

D = -41.22

S = -40.81

C = -46.59

10

(Giles et al., 2019)

D = -35.45 S = -35.50 C = -30.91

D = -24.49S = -23.96

10

Time

Using models to optimise AV behaviour

Braking as if to stop exactly at crossing (1.7 m/s²)

Braking just slightly harder (2.2 m/s²)

Model code released:

https://osf.io/49awh/

Some key areas for further model development

Human...

- ... recognition of actions/ intentions
- ... communication
- ... strategic/game-theoretic behaviour
- ... attention/gaze allocation

(Friston et al., 2012, Front Psychol)

COMMOTIONS Computational Models of Traffic Interactions for Testing of Automated Vehicles

- 2019-2023, £1.4M UK project
- More complete neurocognitive models of interactions
- Investigate complementarity with data-driven models

"Green paper" inviting input: https://osf.io/vbcaz

Two 3.5-year postdoc positions: https://jobs.leeds.ac.uk/ENVTR1108 https://jobs.leeds.ac.uk/ENVTR1109

Safe and acceptable AVs require complementing data-driven models of human behaviour with neurocognitive models

We (and others) are working on this challenge – input and discussion more than welcome!

Thanks!

g.markkula@leeds.ac.uk
@markkula

Model code released: https://osf.io/49awh/

"Green paper" inviting input: https://osf.io/vbcaz

Two 3.5-year postdoc positions: https://jobs.leeds.ac.uk/ENVTR1108
https://jobs.leeds.ac.uk/ENVTR1109