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How to make AVs that can successfully coexist with humans?
- By developing high-fidelity models of human road user behaviour

What kinds of models?
- Combination of data-driven and neurocognitive models
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AV deployment: two main risks UNIVERSITP SELEEDS

« Human frustration subtleties of local interactions  near-crashes
* Human injury crashes

™ Waymo self-driving cars face ha: X ‘\L:/ an Uber's Self-Driving Car Didn't Kr X
& C () ( & https//eu.azcentral.com/story/money/business/tech/2018/12/11/waymo-self-driving-vehicles-face-harass %) & @ ¢
: = @ C )} @& wired.com/story/ubers-self-driving-car-didnt-know-pedestria.. ¥ [ © O € B . :
azcentral. = mImEm BUSINESS CULTURE GEAR IDEAS MORE v SIGN IN Q

A slashed tire, a pointed gun, bullies on o .
the road: Why do Waymo self-driving Uber’s Self-Drlvmg Car Didn’t Know

vans get so much hate? Pedestrians Could Jaywalk

The National Transportation Safety Board releases hundreds of pages related to the
2018 crash in Tempe, Arizona, that killed Elaine Herzberg.

Ryan Randazzo | Arizona Republic
Published 4:05 PM EST Dec 14, 2018




Why high-fidelity models
of human behaviour?

To make...
e ... AVs drive like humans?

e ... online AV predictions
about human behaviour

e ... agents for virtual
environments, for
simulated AV testing

Currently no humans here...
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Data-driven models By
frames
 Achieve realistic-looking routine traffic
- - i el o Vieulprocessing 5
» Challenges in relation to "main risks": Bad By B

« Human behaviour in (near-)crashes
Very rare in any real-traffic dataset

« Human behaviour in local interactions
How do we know models are capturing -
the important subtleties?

- Complement with Insight into how mechanisms generalise
white-box neurocognitive odet Controlled
models experiment
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Framework for routine and (near-)crash driving umvms.wou
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Evidence accumulation (Cook and Maunsell, 2002)
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Framework for routine and (near-)crash driving . .vezsirv o Lﬂ

Routine driving Near-crash driving
erceptua/ ;eu = ‘
Closed-loop Open-loop =) £
((\\)\3‘\2&00 N f
o= &
Short delays Long, random delays e e (e S T
| L e N
1 ‘\07"0(
Q
Well-adjusted control Under- and overreactions = b @3

2019-11-08 Markkula | Cognitive Vehicles Workshop | IROS2019 7



... Explains routine and (near-)crash braking BNIERSTIG SE TR
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... Explains routine and (near-)crash braking umvmsmom

Unpublished data removed

(Victor et al, 2015, TRB report)
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"Predictive processing”
extension explains response
to automation failures
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Using EEG to peek into the decision process?

Unpublished data removed
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Generalising to road crossing interactions

(Giles et al., 2019)
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Generalising to road crossing interactions

. Sensory Perceptual Action
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Generalising to road crossing interactions

ifi

(Giles et al., 2019) Constant speed
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Using models to optimise AV behaviour

Braking as if to stop exactly at crossing Braking just slightly harder
(1.7 m/s?) (2.2 m/s?)
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Model code released:
https://osf.io/49awh/
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https://osf.io/49awh/

( You F!Rﬂ 4 ‘:H =
Some key areas for further R

model development

Human...

e ... recognition of actions/ -
intentions s B

* ... COmmunication (Pezzulo et al., 2013,

. ... strategic/game-theoretic PO One
behaviour

e ... attention/gaze allocation

(Friston et al., 2012,
Front Psychol)
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COMMOTIONS
Computational Models of Traffic Interactions
for Testing of Automated Vehicles

S

« 2019-2023, £1.4M UK project £

» More complete ‘ "Green paper” inviting input:
neurocognitive models of 5 https://ost.io/vbcaz
interactions ) S\

* Investigate complementarity

with data-driven models Two 3.5-year postdoc positions:

https://jobs.leeds.ac.uk/ENVTR1108
https://jobs.leeds.ac.uk/ENVTR1109
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https://osf.io/vbcaz
https://jobs.leeds.ac.uk/ENVTR1108
https://jobs.leeds.ac.uk/ENVTR1108

Safe and acceptable AVs require complementing data-driven
models of human behaviour with neurocognitive models

We (and others) are working on this challenge
- input and discussion more than welcome!
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Thanks!

g.markkula@leeds.ac.uk
@markkula
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Model code released:
https://ost.io/49awh/

"Green paper” inviting input:
https://osf.io/vbcaz

Two 3.5-year postdoc positions:

https://

jobs.leeds.ac.uk/ENVTR1108

https://

jobs.leeds.ac.uk/ENVTR1109



mailto:g.markkula@leeds.ac.uk
https://osf.io/49awh/
https://osf.io/vbcaz
https://jobs.leeds.ac.uk/ENVTR1108
https://jobs.leeds.ac.uk/ENVTR1108

