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TALK OUTLINE

1. The “dream” of Autonomous Driving 

2. Engineering approaches, issues and open challenges

3. Artificial Driving Agent cognitive architectures

Explainable safe and scalable AI

Learning by self-instantiated simulations (“dreaming”)



THE “DREAM” OF AUTONOMOUS DRIVING

๏ Motivations

๏ Safety. Assumptions: 1) humans are bad drivers, let us 2) “automate” driving

๏ Service people that cannot drive

๏ Technological and market leadership

๏ 44 (at least) corporations were listed working on Automated Driving 

๏ https://www.cbinsights.com/blog/autonomous-driverless-vehicles-corporations-list/

https://www.cbinsights.com/blog/autonomous-driverless-vehicles-corporations-list/


CHALLENGES WITH AUTOMATED DRIVING

๏ 1) Human beings are actually very good drivers
๏ 1 fatal accident every 100 million of driven miles; severe accident every 12 millions miles.

๏ Average of all conditions and all types of driver (senior/attentive drivers are much better). 

๏ Target figure should be ~100 times better (which means 400 deaths/year in the EU).

๏ Benchmarks

๏ Tesla (level 2). 1 fatal accident after 130 million miles (but in restricted scenarios, level 2 supervised). 

๏ Google (level 4). Reports 69 safety-critical takeover per year (13 would be crashes) in 2015. 

๏ 2) Autonomous driving needs cognition abilities
๏ Driving a car is not a matter of ”automation”



EXAMPLE 1



BEHAVIORS ARE A MATTER OF MENTAL PREDICTION



TRADITIONAL APPROACHES TO AUTOMATED DRIVING

๏ Hardcoded Design (sense-think-act, maybe DL for perception only) is attractive

๏ Apparently everything is under control of the designer.

๏ However predicting how the system will operate in every possible 
complex situations is hard.

๏ Lack of autonomy

๏ In the real world a system should be able to correctly operate in situations 
that were not predicted, nor even known to the designer.



๏ NVIDIA (with Autonomous Stuff vehicle).

๏ M. Bojarski et. Al., “End to End Learning for Self-Driving Cars”, arXiv: 1604.07316v1 (Apr. 16)

END-TO-END?



BEYOND PURE IMITATION…

๏Waymo (2018)

๏ “simple imitation of a large number of expert demonstrations is not enough 
to create a capable and reliable self-driving technology”

๏ “Following the success of neural networks for perception, we naturally asked 
ourselves the question: given that we had millions of miles of driving data 
(i.e., expert driving demonstrations), can we train a skilled driver using a 
purely supervised deep learning approach?”

๏ ChauffeurNet: learns by synthesizing suitable training data via 
perturbations of the expert driven trajectory

๏ https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2 



๏ Dreams4Cars is an H2020 RIA in robotics. The main idea is developing an agent that:

1. Learns models of the world to enable prediction abilities (both procedural and declarative
predictions)

2. Use predictions to synthetize (mostly offline) improved sensorimotor control/behaviors

TOWARDS A “DIFFERENT” PARADIGM



ACTION PRIMING

๏ The Dorsal Stream is the direct sensorimotor loop
๏ Parallel action instantiation
๏ Action value is “salience” (activation of neural patterns in biology)



MODULAR STRUCTURE (EXCITATORY CIRCUITS)
๏ Salience may be computed independently for each space-time affordable location.
๏ Motor cortex is obtained by overlapping the salience of each individual goal.
๏ Dorsal stream excitatory module is a (deep) neural network that computes activation (the 

output tensor) for a generic road strip with given vehicle forward model and given 
environmental conditions.



๏ Dorsal stream basic inhibitory module is a (deep) neural network that computes inhibition 
(the output tensor) for a generic space-time location with given vehicle forward model and 
given environmental conditions.

๏ Prediction of obstacle trajectory from a different module.

๏ A. Plebe, M. Da Lio, D. Bortoluzzi, “On Reliable Neural Network Sensorimotor Control in Autonomous Vehicles,” 
IEEE Trans. Int. Transportation Sys, in press, 2019.
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Figure 4: Inhibitions caused by obstacles are evaluated as inhibitions for space-time future positions pre-
dicted for obstacle motion [9]. A sufficiently fine discretization must be used. 

 

2.1.5 Convergent-divergent network structure for episodic simulation 
Besides the “wake” time use described so far, the dorsal stream has also a role in conceptualizing episodes. 
For this, the dorsal stream must have a convergence-divergence architecture (Figure 5, following [3]) as ex-
plained with more details in D1.3, section 3.2.1 and with examples in D3.1 section 3. 

Encoding of episodes does not need to be carried out inline. Rather, it may happen via post processing of raw 
log data offline. If decoding of episodes is carried out inline, this may be used for “wake” time imagery of 
events, such as, for example, predicting the behaviour of other road users (this is not the only way to predict 
other road users’ intentions; mirroring process are in general more effective [10]–[12]). 

 

 

Figure 5: Convergence-divergence zones implementation of the dorsal stream for episodic simulations (see 
D1.3, section 3.2.1). 

 

2.2 Biasing loop (frontal cortex loop)  
While section 2.1 deals with the generation of safe mid/low-level behaviours (lanes/roads trajectories and ob-
stacle avoidance), to implement more complex symbolic rule-based behaviours such as legal action sequence-
planning (e.g. overtaking), further layers are constructed on top of the dorsal stream that steer the agent low-
level behaviours to produce legal action sequences for longer-term goals.  

This high-level loop is specified as a hierarchical Perception-Action (PA) subsumption architecture. As such, it 
provides a unified framework for:  

MODULAR STRUCTURE (INHIBITORY CIRCUITS)



EXPLAINABLE AI (AT SYSTEM LEVEL)
๏ The sensorimotor system is interpretable by inspection of the motor cortex. 
๏ One can always say which actions were instantiated and why one particular action was 

selected.
๏ As a matter of fact this is the way the agent is debugged.



ARTIFICIAL IMPLEMENTATION OF BIASING MECHANICS
๏ Long-term goals bias proximal action by artificially 

increasing/decreasing the salience at lower level 
competition.

๏ The low-level may always veto higher-level 
directives (post bias salience may be insufficient).
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a) Semantic annotated event logging. 
b) Generation of legal priors for action selection via the basal ganglia (BG) loop. 
c) High-level motor babbling/top-down dream instantiation (for the offline system). 

Dreams4Cars has thus implemented a unified architecture (the Logical Reasoning Module) with a common 
symbolic/sub-symbolic PA interface that operates across the three distinct symbolic/sub-symbolic information-
flow modalities (bottom-up semantic annotation, top-down legal intention biasing, top-down dream instantia-
tion).  

This deliverable is focused on a) and b) functionalities; the dream-instantiation process itself is treated in de-
liverables D3.2 and only discussed here in so far as it influences the design of the common run-time system 
and interfaces. 

2.2.1 Biasing principle 
The way in which the Logical Reasoning Module (LRM) affects the low-level motor control is by biasing action 
selection (see also D1.3, section 2.2) via increasing the weight of the humps of activities that correspond to the 
actions of a desirable sequence (biological inspiration in [2]). In addition, the weights of humps of activities 
that correspond of undesired actions are conversely reduced, hence opposing illegal/undesired (but physically 
possible) actions. 

 

 

Figure 6: Biasing principle. Suppose the long-term goal is to remain in the lane (a, green shading). Suppose 
also that taking exit b is not desired (which means that a secondary priority is to stay in the main road and, 
if necessary c has to be preferred to b). Centre: the salience function of goals a and b are computed (c is 
neutral and not shown), normalized and used via variable weightings to artificially increase the strength of 
hump a and decrease the strength of hump b in the motor cortex (right). 

 

As an example (see Figure 6), suppose that long term behaviours such as remain in the lane (a), overtake (c) 
and take the exit (b) have been formulated by the LRM and that, after the high-level action selection (see sec-
tion 2.3) a is marked as preferred action and b as undesired action. The salience function of goals a and b and c 
are computed (c is neutral and not shown) and used to define regions of the original motor cortex to be 
strengthened/weakened (Figure 6, right, see section 2.3 for the algorithm). The weights for actions a and b 
may be changed (AB > 1, 0 < 	AF < 1), and may be learned for optimizing long-term strategical behaviours.  

Note, at this point, that the LRM can only make recommendations (as per the subsumptive `principle of lower-
level veto’), such that the final choice is in charge of the lowest level motor control (dorsal stream). This way, 
for example, should the obstacle be so close as to completely cancel hump a, the bias a would be ineffective 
and the agent would change lane (to avoid the obstacle) whatever the strength of the recommendation from 
the LRM. 

The final authority is thus always in the responsibility of the dorsal stream physical loops and, when they are 
proved to be safe, there is no means by which errors from the LRM can induce collisions because the LRM can 
only use the safe low-level building blocks. 



STRATEGY FOR BOOTSTRAPPING SENSORIMOTOR ABILITIES



๏ The Cerebellum has a specialized micro-structure 
๏ Effective into learning (weak) superposition of effects and dynamical systems
๏ Sample efficient, albeit biased towards learning the real world physics

๏ S. James, S. Anderson, M. Da Lio, “Longitudinal Vehicle Dynamics: A Comparison of Physical and Data-Driven 
Models Under Large-Scale Real-World Driving Conditions,” VSD (submitted), 2019
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Fig. 2. Model selection for the linear system identification model, where the model index is as follows: t1o - torque only, first order; tb1o - torque-brake
input, first order; tbg1o - torque-brake-gradient input, first order; t2o - torque only, second order; tb2o - torque-brake input, second order; tbg2o - torque-
brake-gradient input, second order; (a)-(d) Model selection plots, which indicate that the models with torque-brake-gradient inputs should be preferred. Note
that FPE can be misleading because it is based on one-step-ahead prediction errors, unlike the other measures. (e)-(f) Residual analysis plots, which indicate
that the first and second order models have similar auto-correlation in the model residuals and in the gradient input-residual cross-correlation.

Fig. 3. Neural network model. The network is made of 4 converging branches that learn the air drag and rolling resistance (1), the brake effect (2), the
gradient effect (3) and the engine effect. Branches 2 and 4 learn dynamic models via the learning of the impulse response. Branch 3 estimates the gradient
effect from the raw recorded GPS heights. vk: longitudinal velocity at sample time k; pbk: brake master cylinder pressure at time k; hk: Road height at time
k; Tgk: engine torque at time k; Gk: Gear ratio at time k.

LEVEL 1 - LEARNING FORWARD AND INVERSE MODELS



PERFORMANCE VS. OTHER TYPES OF MODELS
7

Fig. 4. Simulation results for physical (top two graphs), state space (middle two graphs) and neural network models. For each model, the simulation is carried
out on the training data and on the validation data and plotted in colour, with the recorded data plotted in black. The difference between simulation and data
is plotted in gray.

TABLE II
PHYSICAL MODEL PARAMETER RESULTS

Parameter Value Unit Estimated/known

M 1550 kg Known
g 9.80665 m/s2 Known

k⌧ = ⌘gRd⌘d/0.292 12.41 m�1 Estimated
kb 189 N/bar Known
kD 0.215 kg/m Estimated
kR 0.0214 - Estimated

Gear ratios - - Known

second order model should be chosen (results not shown). The
first and second order models were then evaluated with three
combinations of input: torque-only, torque-brake and torque-
brake-gradient. The model evaluation methods indicated that

inputs should consist of torque-brake-gradient as these models
had the best fits to the data [Fig. 2(a)–(d))].

Selecting between the first or second order models requires
analysis of the model residuals and consideration of the model
complexity. Auto- and cross-correlation residues for the first
order torque-brake-gradient model are shown in Fig. 2(e). The
slowly varying dynamics of the vehicle are responsible for the
auto-correlation values all being very close to 1, indicating that
the current vehicle velocity strongly predicts the same vehicle
velocity over the 0.125 s time window shown in the plots.
The cross-correlations appear slightly larger than those for the
second order model in Fig. 2(f). On this basis we might choose
the second order model as the optimum representation of the
system, although as the fit quality for the first order model
is better and the residual analysis is similar, the first order
model is preferred for its simplicity. Also the FPE for the first
order model is less than for the second order model, indicating

๏ Comparison with Analytical and SS 
models

๏ S. James, S. Anderson, M. Da Lio, 
“Longitudinal Vehicle Dynamics: A 
Comparison of Physical and Data-Driven 
Models Under Large-Scale Real-World 
Driving Conditions,” VSD (submitted), 
2019



PERFORMANCE VS. OTHER TYPES OF NEURAL NETWORKS
๏ Comparison of networks of different architecture (recurrent versus non-recurrent, with 

structure vs with generic connections)

๏ M. Da Lio, D. Bortoluzzi, G.P. Rosati Papini “Modeling Longitudinal Vehicle Dynamics with Neural Networks,” VSD, 2019
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Figure 7. Structured recurrent network (iv). Dotted boxes correspond to (1) air drag, (2) braking force, (3)
slope e↵ect and (4) engine torque respectively.

and in the weights and biases of the linear layer. The state dimension (m=23) is
chosen such that the number of learnable parameters (852) is very close to that of the
unstructured convolutive network.

The network is trained as stateless: a sequence of 25 input vectors – the same size
of the history of networks (i) and (ii) –, uk�24, ...,uk is taken, beginning with the
null state sk�24 = 0. The output of the recurrent layer is a sequence of 25 states
sk�24, ..., sk of which the first 24 are not considered to ignore the transient phase (it
was assumed and verified that the transient response lasts less than 25 steps). The last
state sk is considered (extracted via the Sequence Last (SL) layer) and transformed
into the estimated acceleration v̇k that is trained against the actual acceleration.

6.2. (iv) Structured recurrent neural network

Figure 7 shows the structured recurrent network (iv). In this case each individual
signal feeds a dedicated BR recursive layer, where overall the structure follows the (ii)
template (fig. 3). The individual BR layers are assigned a reduced state dimension
(m=6) in order to produce a total number of train-able parameters (262) similar to
that of the convolutive version (ii). The network is trained the same way as network
(iii).

6.3. Comparison between unstructured and structured recurrent networks

The analysis of the fit residuals of the unstructured and structured recurrent net-
works in the frequency domain shown in fig. 8 highlights that the performance of the
unstructured network looks slightly better in the bandwidth up to 2-3 Hz and both
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the various converging network branches model di↵erent fi in eq. (3). On top the
instantaneous velocity is squared and enters a layer which learns the air drag coe�cient
and the rolling resistance (gain and bias of the single neuron constituting the layer).
On the second row, the brake pressure history – same 25 values than in network (ii)
– enters a neural layer which learns the acceleration e↵ect of the brake, which was
supposed linear (and the hypotheses was then verified in the training). The following
ReLu (Rectified activation unit) was included to enforce the fact that brake forces
can only cause decelerations (which helps the training convergence). The third row
estimates the acceleration caused by road slope. Finally the bottom row estimates the
tractive force and acceleration. Here the 25 past engine torque values enter a neural
layer with 8 output neurons. Each neuron learns the propulsive acceleration that would
be caused by one gear. Only the neuron corresponding to the active gear is then passed
downstream. The total number of learn-able parameters in this network is 248 of which
200 are in the engine layer which learns the e↵ects of the drive-line for the 8 di↵erent
gears in parallel.

In fig. 2 the predicted acceleration by the unstructured and structured networks are
compared with the measured acceleration. It can be seen that the structured network,
despite the reduced number of parameters, provides a better fit.

5.3. Comparison between unstructured and structured convolutional
networks

The networks performances are evaluated by examining the power spectral density
[11] of: a) the acceleration signal, b) the fit residuals of network (ii), c) the fit residuals
of network (i) and d) the measurement noise (fig.4). The latter is estimated by ex-
tracting the parts of the acceleration signal (after Kalman filtering) where the vehicle
is running with constant velocity. This stretch of data, of only about 50 s in total,
is de-trended, windowed (Hamming type) and its power spectral density is calculated
with the periodogram method [12] as a reference level (the pink line in the chart). The
limited time span of the extracted acceleration noise does not allow the calculation of
the noise spectral density as the mean of many estimates, resulting in a significantly
greater scatter of the plotted line (compared to the other curves). Conversely, spectral
densities of the signal and residuals are the average of about 10 estimates.

We make the assumption that the system is of output-error type, which sees the noise
superimposed to the system output without being subjected to the system dynamics.
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Figure 2. Example of measured signals and convolutional networks prediction. Accelerations are rescaled
with respect to the maximum measured acceleration (3.1ms�2).

latter is encoded by a unit vector layer (layer 1) which returns a vector of length 8
(number of gears counting the neutral gear) with all elements set at zero except the
element corresponding to the active gear which is set at 1. This vector is concatenated
with the other inputs on layer 2 (hence layer 3 receives 8 signaling neurons that specify
which is the currently active gear). Note that only the instantaneous velocity is given
in the inputs: the network can thus use this information to model air drag, but has no
cue to derive acceleration form di↵erentiation of the velocity.

Given this structure, the length of the time history of each input had to be defined
with care. Extending to excessively old samples increases the number of learn-able
parameters, with the risk of over-fitting. Conversely, too short an history makes the
network unable to grasp the system dynamics that occurs in larger timescales. Note
that the longest windows, extending back to 25 samples, means 1.25 seconds, which
is a time interval su�cient for most of the longitudinal dynamics time scales.

Figure 2 gives an example of the network performance. In the excerpted record
both acceleration and deceleration maneuvers are present with related gear shifts.
The network captures the main longitudinal dynamics phenomena (including drive-
line vibrations), as shown by the typical oscillations of the acceleration that follow
gear shifts, especially at low gears.

5.2. (ii) Structured convolution-like neural network

In the structured network (ii) the neurons are organized as shown in fig. 3 in order
to process the input signals according to the physics inspired logic eq. (3). Here,
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LEVELS 2+

๏ This part is omitted (still confidential)



EARLY MOVES…

๏ DFKI tests at ATC test track (emergent behaviour)



LEVELS 4-5 VIA REINFORCEMENT LEARNING

๏ RL may be used to learn safe high-level behaviours
๏ By learning biases for action selection
๏ By learning some hyper-parameters for driving (e.g. the safe speed)



EXAMPLE LEARNING SAFE SPEED IN PEDESTRIAN CROSSINGS



CONCLUSIONS

1. Multi-loop agent architecture (functionally bioinspired)

2. Explainable AI (and robust, safe, modular, scalable, economical...)

3. Trained by learning predictive models that are then manipulated to 
synthetize sensorimotor behaviours at various levels 

4. Constructs progressive abstractions of actions

5. RL efficiently integrated on top

6. More: see posters by Alice, Riccardo and Sara


