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TALK OUTLINE

1. The “dream” of Autonomous Driving

2. Engineering approaches, issues and open challenges

3. Artificial Driving Agent cognitive architectures
Explainable safe and scalable Al

Learning by self-instantiated simulations (“"dreaming”)
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THE "DREAM™ OF AUTONOMOUS DRIVING

o Motivations

o Safety. Assumptions: 1) humans are bad drivers, let us 2) “automate” driving
o Service people that cannot drive

o Technological and market leadership

o 44 (at least) corporations were listed working on Automated Driving

o https://www.cbinsights.com/blog/autonomous-driverless-vehicles-corporations-list/
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CHALLENGES WITH AUTOMATED DRIVING

© 1) Human beings are actually very good drivers
o 1 fatal accident every 100 million of driven miles; severe accident every 12 millions miles.

© Average of all conditions and all types of driver (senior/attentive drivers are much better).

© Targetfigure should be ~100 times better (which means 400 deaths/year in the EU).

© Benchmarks
o Tesla (level 2). 1 fatal accident after 130 million miles (but in restricted scenarios, level 2 supervised).

© Google (level 4). Reports 69 safety-critical takeover per year (13 would be crashes) in 2015.

© 2) Autonomous driving needs cognition abilities

© Driving a car is not a matter of "automation”
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EXAMPLE 1

DREAMS4CARS

¥ " ; LA TN
e der R Al e
ARG P E Y T

B sky

Il pole

B vegetation
B building
M car

] traffic sign
M truck

M road

] terrain
B sidewalk
M wall

M bicycle
B fence



BEHAVIORS ARE A MATTER OF MENTAL PREDICTION
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TRADITIONAL APPROACHES TO AUTOMATED DRIVING

Oa
O—> Perception
o7

© Hardcoded Design (sense-think-act, maybe DL for perception only) is attractive

Decision Action — e

© Apparently everything is under control of the designer.

© However predicting how the system will operate in every possible
complex situations is hard.

o Lack of autonomy

© In the real world a system should be able to correctly operate in situations
that were not predicted, nor even known to the designer.
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END-TO-END?

© NVIDIA (with Autonomous Stuff vehicle).

© M. Bojarski et. Al,, “End to End Learning for Self-Driving Cars”, arXiv: 1604.07316v1 (Apr.
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BEYOND PURE IMITATION. . .

© Waymo (2018)

o “simple imitation of a large number of expert demonstrations is not enough
to create a capable and reliable self-driving technology”

o "Following the success of neural networks for perception, we naturally asked
ourselves the question: given that we had millions of miles of driving data
(i.e., expert driving demonstrations), can we train a skilled driver using a
purely supervised deep learning approach?”

© ChauffeurNet: learns by synthesizing suitable training data via
perturbations of the expert driven trajectory

© https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499t8bcb2
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TOWARDS A “DIFFERENT” PARADIGM

© Dreams4Carsis an H2020 RIA in robotics. The main idea is developing an agent that:

1. Learns models of the world to enable prediction abilities (both procedural and declarative
predictions)

2. Use predictions to synthetize (mostly offline) improved sensorimotor control/behaviors
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ACTION PRIMING

Action Priming

dorsal stream) motor
cortex
Automotive
Sensors sensory ﬂ
cortex \

Higher-level
Action blasmg

© The Dorsal Stream is the direct sensorimotor loop

Action Selectlon

o o o o (basal ganglla
o Parallel action instantiation
o Action value is “salience” (activation of neural patterns in biology) B
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MODULAR STRUCTURE (EXCITATORY CIRCUITS)

o© Salience may be computed independently for each space-time affordable location.
© Motor cortex is obtained by overlapping the salience of each individual goal.

© Dorsal stream excitatory module is a (deep) neural network that computes activation (the
output tensor) for a generic road strip with given vehicle forward model and given
environmental conditions.
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MODULAR STRUCTURE (INRIBITGRY CIRCUITS)

© Dorsal stream basic inhibitory module is a (deep) neural network that computes inhibition
(the output tensor) for a generic space-time location with given vehicle forward model and
given environmental conditions.

© Prediction of obstacle trajectory from a different module.
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o A.Plebe, M. Da Lio, D. Bortoluzzi, “On Reliable Neural Network Sensorimotor Control in Autonomous Vehicles,”
IEEE Trans. Int. Transportation Sys, in press, 2019.
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EXPLAINABLE Al (AT SYSTEM LEVEL)

© The sensorimotor system is interpretable by inspection of the motor cortex.

© Orlwe caQI always say which actions were instantiated and why one particular action was
selected.

© As a matter of fact this is the way the agent is debugged.
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ARTIFICIAL IMPLEMENTATION OF BIASING MECHANICS

@ Long-term goals bias proximal action by artificially

increasing/decreasing the salience at lower level
competition.

© The low-level may always veto higher-level
directives (post bias salience may be insufficient).

"""""""""""""""""""""""""""""""""""

Longitudinal control

Longitudinal control

------------------------------------------------------------------------------------------------------------------------------------
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STRATEGY FOR BOOTSTRAPPING SENSORIMOTOR ABILITIES

© ® ® ® ®
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LEVEL 1 - LEARNING FORWARD AND INVERSE MODELS

© The Cerebellum has a specialized micro-structure
o Effective into learning (weak) superposition of effects and dynamical systems

© Sample efficient, albeit biased towards learning the real world physics

Mossy fibres

u , U , U
1,t’ "1,t-1" "1,t-n Granular cells 1

Parallel fibres oo
| 1 I

My g Mg 4.9 7 ¥ 4y

ol Golgi ceE
Vg s Wy 07 Y wﬁnﬁﬂn 9 (
“3,67 43,417 43,t-n oL - b pZ,t - E_ ________________ ___t _____ b
= 2np+l----o4
/( )\ {hy —n, AL, ..., hy + n, AL} e %>D-—>—§l\3/

. pN,t ““““““ TS ST A R T TR I

{f

___________________________

0

Ut U p-17 Yk ton
e %1 Y bn

‘_

v/

u , U P .
ht' “ht-1" “htn Purkinje cells

------------------------------------

Y1t Yot

o S.James, S. Anderson, M. Da Lio, “Longitudinal Vehicle Dynamics: A Comparison of Physical and Data-Driven
Models Under Large-Scale Real-World Driving Conditions,” VSD (submitted), 2019
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PERFORMANCE VS. OTHER TYPES OF MODELS

© Comparison with Analytical and SS
models

o S.James, S. Anderson, M. Da Lio,
“Longitudinal Vehicle Dynamics: A
Comparison of Physical and Data-Driven
Models Under Large-Scale Real-World
Driving Conditions,” VSD (submitted),
2019
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PERFORMANCE VS. OTHER TYPES OF NEURAL NETWORKS

© Comparison of networks of different architecture (recurrent versus non-recurrent, with
structure vs with generic connections)

____________________________________________

1 5125 6 6 1 ;
““““ ; / v, e—>m2>{BR > sL > g > —
v, e—>m? —>§ _________________________________________ 5
_______________ 2 T b —
_______________ Pbko—»BR—>SL+§+am 3
n : 1 I : I
{pbk_n_,_l g eee g pbk} 0—):~ % >Ry >+ > Vi '::::::::6:::::::::6:::::::I::::::::::::::'
SRS hi. &—> B8R > SL (> % ; > + —>e iy
2nptl i
(hi —ny AL, o, by +my ALY o———> /1, SIS
e ' Top —>BRI>SL >R I> % > + > R |
n i 8 i i :/4
(Tgtcnrs > Terd oK« [>[+] ;
| | Gy, «—> w
| 4 T
G, o——> w |
Vi
Vi
Pbk o
{pbk—n+1 9 see pbk}
12 23 23 .
2ny+1 10 10 hi o C > BR|—>»SL > %-) ® Vi
{(hy —n, AL, ..., hy +n, AL} o c +§+Mu+§»-vk
T
{Tgk—n+19 *ee Tgk} sk
Gy, o——>w G, e——>{uv

© M. Da Lio, D. Bortoluzzi, G.P. Rosati Papini “"Modeling Longitudinal Vehicle Dynamics with Neural Networks,” VSD, 2019
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LEVELS 2+

© This part is omitted (still confidential)
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EARLY MOVES...

© DFKI tests at ATC test track (emergent behaviour)
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LEVELS 4-3 VIA REINFORCEMENT LEARNING

© ® ® ® ®
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@ RL may be used to learn safe high-level behaviours
® By learning biases for action selection

© By learning some hyper-parameters for driving (e.g. the safe speed)
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EXAMPLE LEARNING SAFE SPEED IN PEDESTRIAN CROSSINGS
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CONCLUSIONS

1.
2.

Multi-loop agent architecture (functionally bioinspired)
Explainable Al (and robust, safe, modular, scalable, economical...)

Trained by learning predictive models that are then manipulated to
synthetize sensorimotor behaviours at various levels

Constructs progressive abstractions of actions
RL efficiently integrated on top

More: see posters by Alice, Riccardo and Sara
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